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Sizing optimization of a charging station based on the multi-scale current profile and particle swarm optimization: application to power-assisted bikes
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The development of power-assisted bikes (ebike) is of growing interest because of their economic and environmental advantages. The present work deals with the sizing optimization of a charging station for ebike based on particle swarm optimization. It is based on the consumption profile of ebike batteries, solar and wind power, installation, replacement and maintenance costs of components. In a first step, the consumption profile of the ebike batteries is determined using the second order non-linear electrothermal model. Then, the solar and wind data over one year are used to determine the availability of energy at the implementation site of the charging station. Finally, the cost is defined as an objective function, taking into account the constraints on the number of solar photovoltaic panels, the number of wind turbines, the number of storage batteries and the annual charging demand. The context of a charging station to be implemented in the Polytech Annecy campus in France is studied. The results show that the particle swarm optimization allows a cost reduction of around 56.04% compared to a sizing without optimization.

I. INTRODUCTION

The use of power-assisted bikes (ebike) is experiencing growing interest, due to their environmental benefits, easy mobility, low energy cost and reduced traffic flow [START_REF] Muetze | Performance evaluation of electric bicycles[END_REF]. This growth has created new challenges for investors: the charging time of ebike batteries, the scarcity of charging stations, the total coverage of charging demand. This work is focused on the last category.

To cover the charging demand, several works have proposed the use of a multi-source system, integrating solar, wind, storage battery, and/or local grid [START_REF] Sadeghi | Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization[END_REF]- [START_REF] Gharibi | Size and power exchange optimization of a grid-connected diesel generator-photovoltaicfuel cell hybrid energy system considering reliability, cost and renewability[END_REF]. Given the intermittent nature of renewable energy sources, the main challenge of a multi-source system is to optimize the size of the energy sources to meet the charging demand, in order to minimize the total cost of the system [START_REF] Sadeghi | Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization[END_REF]. Cost minimization in sizing a multi-source system depends on several factors: the technical constraints of the system, the charging demand profile, the energy resource availability and the objective function solving method.

Several cost functions are defined in the literature: energy cost (COE) [START_REF] Salameh | Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates[END_REF], total net system cost (TNPC or NPC) [START_REF] Khare | Optimization of hydrogen based hybrid renewable energy system using HOMER, BB-BC and GAMBIT[END_REF], levelized cost of energy (LCOE) [START_REF] Gharibi | Size and power exchange optimization of a grid-connected diesel generator-photovoltaicfuel cell hybrid energy system considering reliability, cost and renewability[END_REF], annualized cost of the system (ACS) [START_REF] Sadeghi | Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization[END_REF]. Among these cost functions, the cost of energy (COE) and total net cost (TNPC) are the most effective indicators of profitability in the economic analysis [START_REF] Mohammed | Particle Swarm Optimization Of a Hybrid Wind/Tidal/PV/Battery Energy System. Application To a Remote Area In Bretagne, France[END_REF]. In this work the minimization of total net cost is used as an objective function. It takes into account the actualized costs of investment, replacement and maintenance costs of components.

The most used constraints in the literature to optimize the sizing of a multi-source system are: the charge/discharge limit of storage batteries, the balance between the energy produced from the sources (solar, wind) and the charging demand [START_REF] Samy | Optimal economic study of hybrid PV-wind-fuel cell system integrated to unreliable electric utility using hybrid search optimization technique[END_REF], the maximum and minimum number of sources, the state of health and charge of ebike batteries [START_REF] Barakat | Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects[END_REF]. In this work, the number of solar panels (PV), wind turbine, the balance between PV/Wind energy and charging demand, as well as the state of health of ebike batteries are considered. The batteries' state of health optimization depend on the charging protocol applied to its cells [START_REF] Liu | Lithiumion battery charging management considering economic costs of electrical energy loss and battery degradation[END_REF]; the protocols proposed in the literature are [START_REF] Keil | Charging protocols for lithium-ion batteries and their impact on cycle life-An experimental study with different 18650 high-power cells[END_REF]: constant current constant voltage (Cccv), multi-scale constant current (Mscc), Boost charging (Bc). Unlike the standard Cccv charging protocol, the Mscc, in addition to being adapted for industrial applications, has the particularity of reducing the implementation cost, which contributes to minimizing the sizing costs of the charging station. In recent years, Mscc has become increasingly popular for the battery charging protocol, as it helps to reduce charging costs and optimize the battery's state of health [START_REF] Liu | Lithiumion battery charging management considering economic costs of electrical energy loss and battery degradation[END_REF] [START_REF] Li | Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current-constant voltage charging strategy[END_REF]. The charging profile proposed in this work is based on the Mscc protocol.

The charging profile of ebike batteries is defined according to several variables: the maximum energy capacity they can consume, the difference between their initial and final states of charge. These states of charge can be determined from several models [START_REF] Liu | Lithiumion battery charging management considering economic costs of electrical energy loss and battery degradation[END_REF]: the first-order equivalent circuit, second-order electro-thermal circuit. The second order non-linear electro-thermal circuit is used in this work to model the charging profile of ebike batteries. It has the advantage of describing the real behavior of the battery cells, because the electrical parameters of such a model are validated by experimental tests.

The knowledge of the ebike charging profile, the charging protocol and the available energy allows an optimal sizing, choosing the right size of sources according to the charging demand and offering the lowest possible cost. Several sizing techniques are proposed in the literature [START_REF] Anoune | Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review[END_REF] [14]: harmonic search algorithm, artificial bee colony algorithm, genetic algorithm (GA), Particle Swarm Optimization (PSO), dynamic programming, quadratic programming and convex optimization. Among these different techniques, PSO has the particularity to be adapted for a better sizing optimization of the components, because it offers a better alternative of source management with a significant cost reduction. The work [START_REF] Mohammed | Particle Swarm Optimization Of a Hybrid Wind/Tidal/PV/Battery Energy System. Application To a Remote Area In Bretagne, France[END_REF] indicates that: PSO is very suitable for sizing, as it has the ability to handle non-linear problems and to avoid the local minimum solution. In this work, the PSO is used for sizing the ebike charging station.

The sizing of a PV/wind/diesel hybrid system is presented in the work [START_REF] Mehrjerdi | Modeling, integration, and optimal selection of the turbine technology in the hybrid wind-photovoltaic renewable energy system design[END_REF]; the linear algorithm is used. The objective function used is the cost function integrating investment, maintenance and operating costs. The results show that the PSO allows to obtain an optimal sizing. In the work [START_REF] Mostafaeipour | Statistical evaluation of using the new generation of wind turbines in South Africa[END_REF], a technical-economic analysis of a wind energy system is performed. The goal is to minimize the cost of energy in homes; Homer software is used. The results led to a cost reduction of 0.363 $/kWh. The sizing of an isolated PV/Diesel hybrid system based on the energy consumption profile is proposed in the work [START_REF] Salameh | Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates[END_REF]. The cost of energy (COE) is used as an objective function with the Homer software considering only the replacement costs of components (batteries and converters). The results allowed to find a better system architecture with a fraction of 48.55 % of renewable energy, an electricity cost of 250$/MWh, and a greenhouse gas reduction of 69.6 %. PSO is used in [START_REF] Barakat | Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects[END_REF] to size a PV/wind/grid hybrid system; the objective functions used are the energy cost and power loss minimization. The load profile used is that of the consumers' electricity demand. In the work [START_REF] Samy | Optimal economic study of hybrid PV-wind-fuel cell system integrated to unreliable electric utility using hybrid search optimization technique[END_REF], the economic analysis of a PV/wind/fuel-cell/grid hybrid system is proposed; the loads considered are domestic. The cost functions used are: the cost of purchasing electricity and the profit of selling the energy to the grid; the meta heuristic method and the harmonics search are combined; the results showed electricity cost of 0.0628 $ kWh below 0.1 $ kWh of the conventional cost.

The PSO is used in the work [START_REF] Chen | Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization[END_REF] for energy management in hybrid electric vehicles by considering the vehicles' state of charge as a constraint: an consumption optimization of 59.55% is obtained compared to the consumption without optimization. In [START_REF] Wu | Demand side energy management of EV charging stations by approximate dynamic programming[END_REF], the dynamic approximation method is used for demand and energy management of a charging station with cost minimization as an objective function. The results have led to a cost reduction of 50 % compared to the conventional charging. In the work [START_REF] Sadeghi | Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization[END_REF], PSO is used to size a PV/wind hybrid system. Electric vehicle batteries are integrated into domestic loads, and modeled by the Monte Carlo method. The objective functions are Life Cycle Cost (LCC) and Loss of power supply probability(Lpsp). The results show that, the inclusion of electric vehicles in loads increases the reliability of the system.

Although several optimization techniques for multisource systems are proposed in order to minimize costs, none of these works have addressed the problem of sizing a charging station using the PSO. Therefore, a new technique for sizing a charging station using PSO is proposed in this work, with the aim of minimizing the total cost of the system and satisfying the charging demand by using solar panel and wind turbines.

The novelty of this work is :

• sizing optimization of power-assisted bike charging station integrating PV/wind hybrid systems with the PSO.

• the application of the multi-scale constant current charging protocol to establish the ebike required consumption profile for the charging station.

In the rest of the document, section 2 deals with the presentation and description of the charging station and its components; section 3 describes the mathematical modeling of the photovoltaic, wind, storage battery system and the charging profile. In Section 5, the sizing results are presented and discussed. Finally, the conclusion and perspectives are presented in section 6.

II. PRESENTATION, DESCRIPTION AND MODELING OF PV PANELS, WIND TURBINE, STORAGE BATTERIES

AND POWER-ASSISTED BIKES.

The overall system configuration is shown in Figure 1 : The system consists of photovoltaic solar panel, wind turbine and storage batteries on the one hand; then direct current controllers, inverter, charging spots to which the ebike can be connected for simultaneous charging on the other hand. The storage batteries are chosen so that PV/wind energy is stored in the absence of the ebike and discharged when the total energy from PV/wind Figure 1. charging station sources cannot cover the entire charging demand. The storage battery charging and discharging is controlled by bidirectional buck-boost controller (conv 3). PV and Wind energy output are controlled using boost converters (conv1 and conv2 respectively). These controllers make it possible to adapt the PV/wind/storage battery output voltages to the DC-bus voltage. The DC/AC inverter makes it possible to adapt the DC bus voltage to the alternating input voltage (AC) of the ebike battery charger. switches are used for energy dispatching to the ebikes. The aim of this work is to find the best configuration to be able to exploit the available energy resource on the one hand, and then to satisfy the charging demand while respecting the constraints on the system on the other hand. The system constraints are: the number of photovoltaic solar panels and wind turbines, the number of storage batteries, the balance between the energy from PV/wind/storage battery and the energy required for charging ebike.

A. Photovoltaic system

The photovoltaic system consists of photovoltaic solar panels (PV), which produce energy in the presence of a given amount of solar irradiation. Several models are proposed in the literature [START_REF] Barakat | Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects[END_REF] [18] [START_REF] Eriksson | Optimization of renewable hybrid energy systems -A multi-objective approach[END_REF]. In this work, the photovoltaic system is modeled by equation ( 1) [START_REF] Mohammed | Economical Evaluation and Optimal Energy Management of a Stand-Alone Hybrid Energy System Handling in Genetic Algorithm Strategies[END_REF] 

P pv = N pv 8760 i=1 (η pv * A pv * G i ) (1) 
P pv : annual production capacity of PV (Watt) N pv : number of PV η pv :

PV efficiency (%) A pv :

PV surface (m2) G i : solar irradiation (W/m2) 8760 : number of hours in a year

B. Wind generator

The mathematical modeling of the wind turbine is given by equation ( 2) [START_REF] Mehrjerdi | Modeling, integration, and optimal selection of the turbine technology in the hybrid wind-photovoltaic renewable energy system design[END_REF] 

P wt =              0 if v (t) < v cutin , v (t) > v cutout N eol 8760 t=1 v(t) 3 -v 3 cutin v 3 r -v 3 cutin if v cutin < v (t) < v r N eol P r if v r < v (t) < v cutout (2) 
P wt : the total annual production capacity of wind turbine (W) v :

the wind speed at time t v cutin : cut-in speed v cutout : cut-out speed N eol : number of wind turbine v r :

nominal speed of wind turbine

C. Average power of the PV/Wind/storage battery and ebike

To calculate the power produced by the solar and wind turbine, as well as the average power required by the ebike, equation ( 3) is used.

P moy,i = 1 N N t=1 P i P i > 0 (t) (3) 
P i the power of each component i i stands respectively for: solar panel, wind turbine and ebike N the non-zero values of P i

D. Storage batteries

The storage battery is modeled using equation (4) [START_REF] Anoune | Optimization and technoeconomic analysis of photovoltaic-wind-battery based hybrid system[END_REF], [START_REF] Eriksson | Optimization of renewable hybrid energy systems -A multi-objective approach[END_REF] 

C b = 8760 t E L (t) * AD V b * DoD max * T cf * η inv * η b (4) 

E. Charging profile modeling

The ebike batteries considered in this work are lithium cell batteries. The model used is that of a Li-ion battery cell A123.26650. It is modeled by the second-order equivalent circuits (figure 2). To take into account the thermal behaviour inside the batteries during the charging and discharging process, the electro-thermal model in The model parameters are given by equation ( 5)

             dSOC(t) dt = -I(t) Cn * 1 3600 dV1(t) dt = -V1(t)) R1(t) * C1(t) + I(t) C1(t) dV2(t) dt = -V2(t)) R2(t) * C2(t) + I(t) C2(t) (5) 
These parameters are time variables; they depend on ebike battery temperature and state of charge (soc) . The parameters values, as well as the experimental protocol that led to the validation of the electro-thermal model are recorded in the work [21] [22].

The cell output voltage is given by equation ( 6).

V T (t) = V ocv(soc(t))-V 1 (t)-V 2 (t)-R 0 (t) * I(t) (6) 
Figure 3. electrothermal coupling

The thermal model is modeled by equation [START_REF] Mohammed | Particle Swarm Optimization Of a Hybrid Wind/Tidal/PV/Battery Energy System. Application To a Remote Area In Bretagne, France[END_REF]; 8)

     C s dTs(t) dt = Tamb-Ts(t) Ru + Tc(t)-Ts(t) Rc(t) C c dTc(t) dt = Ts(t)-Tc(t) Rc + Q(t) (7) 
Q(t) = I(t) * T c (t) dVocv(t) dt -I(t) [V (t) -V ocv(t)] (8 
) the first term of equation( 8) characterizes the entropic heat related to the entropic variation within the battery; the second term is the heat caused by potential surpluses (hysteresis, charge transfer, charge diffusion) [START_REF] Zhang | Improved Realtime State-of-Charge Estimation of LiFePO $_{\boldsymbol 4}$ Battery Based on a Novel Thermoelectric Model[END_REF]. The equation system ( 7) is solved to obtain the internal and surface temperature of the battery as shown in eq [START_REF] Barakat | Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects[END_REF].

     T s k = R c × T amb + R u × T c k-1 -exp (-t k × (R c + R u )) × (R c × T amb -R c × T s o + R u × T c k-1 -R u × T s o ) T c k = T s k-1 + Q k-1 × R c -exp -tk Rc×Cc × (T s k-1 -T c o + Q k-1 × R c ) (9) 
T c o , T s o represents respectively the initial internal and surface temperature of the ebike battery. The flowchart of the charging current profile is shown in Figure 4 F

. Energy consumption profile calculation of ebike battery

The consumption profile is obtained by summing the total energy of each battery cells. It is obtained using equation( 10) 

E = n s=1 N s × tn to U cell (t) × I(t) × dt

A. Objective function

The objective function minimizes the updated investment, replacement and maintenance costs of components (PV, Wind, storage battery, controllers and inverters). The system's total cost C is given by equation ( 11) [START_REF] Han | Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries[END_REF] [6] [START_REF] Mohammed | Particle Swarm Optimization Of a Hybrid Wind/Tidal/PV/Battery Energy System. Application To a Remote Area In Bretagne, France[END_REF].

C = C cap + C repl + C main (11) 
C cap , C repl , C main refers respectively to the capital, replacement and maintenance costs of the components. They are obtained from equations (12)(13)( 14)

C cap = N pv C pv + N eol C eol + N reg C reg + N inv C inv + N bat C bat + C sup (12) 
C repl = N pv A pv C pv + N eol A eol C eol + N reg A reg C reg + N inv A inv C inv + N bat A bat C bat (13) 
C main = N pv M pv + N eol M eol + N reg M reg + N inv M inv + N bat M bat (14) 
C cap the acquisition cost (capital)

C repl replacement cost C main maintenance cost N pv , N eol , N bat,Nreg , N inv
the number of solar panels, wind turbine, storage battery, controller and inverter A pv , A eol , A bat,Areg , A inv the number of times each component is replaced over the system's lifetime M pv , M eol , M bat,Mreg , M inv maintenance costs for each component C pv , C eol , C bat , C reg , C inv the investment costs of the components (PV/Wind/storage battery, controller, inverter)

C sup represents the additional investment costs integrating the infrastructure and wind turbine mast costs. It is calculated using equation ( 15) [START_REF] Bilal | Mise en oeuvre de nouvelles approches d'optimisation multi-objectif de systèmes hybrides éoliensolaire-batterie-groupe électrogène[END_REF] C sup = 30 100

N eol C eol + 20 100 N eol C eol (15) 
To take into account the inflation rate on the market, the actualization factor is used [START_REF] Barakat | Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects[END_REF]. Thus, the discounted cost of the system is given by equations ( 16)(17)( 18)

C a,cap = i(i + 1) y (1 + i) y -1 C cap ( 16 
)
C a,rep = i (1 + i) y -1 C rep (17) C a,main (n) = C main (1)(1 + i nf ) n (18) 
i is the annual interest rate shown in equation ( 19)

i = i -i nf 1 + i nf (19) 
i the nominal interest rate i nf the annual inflation rate y the component's lifetime C a,main (n) the maintenance cost in the n th year C a,main (1) the maintenance cost in the 1 st year The objective function is then calculated using equation ( 20)

f = min [C a,cap (x) + C a,rep (x) + C a,main (x)] (20) where, x = [N pv , N eol , N bat ]

B. Constraints

The constraints used in this work are given by equations (21)(22)(23)( 24)

N pv,min N pv N pv,max (21) 
N eol,min N eol N eol,max (22) 
N bat,min N bat N bat,max (23) 
P pv + P eol + P bat P demand (24)

N pv,min , N pv,max the minimum and maximum number of PV N eol,min , N eol,max the minimum and maximum number of wind turbines N bat,min , N bat,max the minimum and maximum number of storage battery C a,main (n) the maintenance cost in the n th year P pv the power of solar panel, P eol power of the wind turbine, P bat power of the storage battery P demand ebike charging demand power

C. profit and cost reduction ratio

the profit and cost reduction ratio are shown in equation [START_REF] Bilal | Mise en oeuvre de nouvelles approches d'optimisation multi-objectif de systèmes hybrides éoliensolaire-batterie-groupe électrogène[END_REF] and equation ( 26)

P = C -f (25) η = C -f C × 100 (26) 
P: profit η : cost reduction ratio

IV. PARTICLE SWARM OPTIMIZATION

The concept and PSO characteristic equations are detailed in the work [START_REF] Sadeghi | Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization[END_REF]. The principle of PSO consists in defining an objective function, then looking for the optimal constraint values to minimize the objective function. The population in the particle swarm optimization is called a swarm, each entity of population is called a particle. The instruction steps of the PSO are [START_REF] Sadeghi | Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization[END_REF]: step 1 : input the ebike charging profile, meteorological data (solar potential, wind potential) of the studied area, the economic data (cost per unit of power) of photovoltaic panel, wind turbine, the storage battery and any charge controllers.

step 2 : Initialization: for each particle N, • initialize the position x i (0) for any i 1 : N • initialize the best particle position to its initial position P i (0)=x i (0) • Calculate the fitness function of each particle and if f (x j (0)) f (x i (0)) for all i = j, initialize the memory g best = x j (0) step 3 : repeat until the stop criterion

• update the particle velocity according to equation (27

) V i (t + 1) = V i (t) + c 1 (p i -x i (t))R 1 + c 2 (g -x i (t))R 2 (27 
) • update the particle position according to equation (28)

x i (t + 1) = x i (t) + v i (t + 1) (28) 
• evaluate the particle's fitness function

f (x i (t + 1)) • if f (x i (t + 1)) f (p i ), update p best,i = x i (t + 1) • if f (x i (t + 1)) f (g), update g best = x i (t + 1)
step 4 : the best solution is represented by g best

The PSO flowchart is shown in Figure5 In this work, a usage scenario of twelve different ebike batteries in the campus of Polytech Annecy in France is used. This scenario is used to determine the energy consumption profile of ebike. The usage profile of the charging station is given in Figure 6; it consists of five charging spots, which can be used by ebike users between 8:00 am and 5:00 pm. The full-charge time indicated by the manufacturer is three hours. This value is used as a reference value to calculate the charging time of each ebike on the usage profile.

• charging spot 1: the ebike user plugs in "battery 1" to the charging spot 1 at 08:00 am, with an initial state of charge of 30%; the final state of charge (95%) is reached when it is 10:48 am. Another user plugs in the "battery 2" at 2:00 pm, with an initial state of charge of 40%; the final state of charge (95%) is reached at 4:24 pm;

• charging spot 2: the "battery3" is plugged in to the charging spot 2 at 10:00 a.m., with an initial state of charge of 42%; the final state of charge (95%) is reached when it is 12:20 pm. A few hours later, another user plugs in "battery4" to the charging spot 2 at 1:00 pm, with an initial state of charge of 20%; the final state of charge (95%) is reached at 4:12 pm;

• charging spot 3: The user plugs in "battery 5" to the charging spot 3 at 9:00 am, with an initial state of charge of 54%; ten minutes later, "battery 6" with an initial state of charge of 35% is plugged in to the same spot by a second user; the final state of charge is obtained when it is 1:36 pm. A third user plugged in the "battery 7" at 3:00 pm with an initial state of charge of 60%, the final state of charge is obtained at 4:36 pm.

• charging spot 4: the "battery 8" initially at 50% is charged between 8:00 am and 10:00 am by a first user; the "battery9" initially at 38% is then charged from 10:30 to 12:59 am; finally the "battery10" with an initial state of charge of 65% is connected from 2:00 pm to 3:24 pm.

• charging spot 5: the "battery11" with an initial state of charge of 15% is plugged in at 8:00 am, the end of charge is obtained when it is 11:24 am; thirty-six minutes later, the "battery12" initially at 25% is charged between 12:00 and 3:00 pm 

C. Current and charging profile

The charging current profile of the ebike battery cells is shown in Figure8. It corresponds to ebike battery charging currents presented on the charging station's usage profile. Results show a difference in battery charging time depending on the initial state of charge. The lower the initial state of charge, the longer the charging time. To obtain the overall battery charging profile, the total number of cells in each battery is calculated using equation [START_REF] Liu | Lithiumion battery charging management considering economic costs of electrical energy loss and battery degradation[END_REF]. The consumption profile is shown in Figure 9.

It shows a peak consumption of 595.85W at 08 : 00am compared to 34.81W at 3.00pm. This change in consumption is justified by: • the simultaneous connection of ebike 1 (battery 1), ebike 8 (battery 8) and ebike11 (battery 11) at 08.00am, with an initial state of charge of 30%, 50% and 15% respectively;

• the state of charge of ebike 2 (battery 2), ebike 7 (battery 7), ebike 10 (battery 10). Indeed, when it is 3.00 pm, these batteries are close to the maximum state of charge of 95%. This is why a low power consumption of the ebike is observed at 3 : 00pm.

D. Sizing results

Ebike charging station sizing result is shown in Table IV. These results show that, one photovoltaic solar panel, one wind turbine and one storage battery are sufficient to cover the annual charging requirements of the ebike. Indeed, the average power consumed by ebike is 147.5 W. The average power output of PV and wind sources are respectively 419.82 and 69.76 W, which fully meet the ebike charging requirements. The unit value of the storage battery can be justified by the low power production of the solar panel and wind turbine during the unused period of the charging station. Indeed, there is no energy output from solar panel after 5pm, therefore only the wind turbine power production is stored in the storage battery after this time. In addition, a low power production of the wind turbine (69.75 Watt) is observed on site. Therefore, only one battery is needed to store the produced energy from the permanence hours of the charging station (when there is no charging demand).

The average output power of solar panel, wind turbine and charging demand are presented in tableV. 

E. PSO convergence curve

The convergence curve on cost optimization is shown in figure 10. It shows a total system cost convergence from 4681.9 euros to an optimal value of 2055.6 euros. This result corresponds to a profit of 2626.9 euro, representing a 56.11% cost reduction compared to the cost without optimization. Optimal cost is obtained after 4 iterations. This characterizes the efficiency of the particle swarm optimization used for sizing. Sizing costs with and without optimization are shown in table VI 

VI. CONCLUSION

The Mscc protocol applied to the second order equivalent circuit allowed to design the charging profile of the ebike batteries. The investment, replacement and maintenance costs of the components allowed to define the objective function, which is minimized using PSO. The results obtained allowed to understand the PSO's benefit in the sizing of the ebike charging stations. This work was limited to a PV/wind/battery hybrid system. In future, we intend to integrate the national grid in the energy sources, then to study advantages of using ebike batteries as a buffer battery in the sizing optimization of a charging station.

  C b storage batteries capacity E L energy charging demand (ebike) AD number of autonomy days V b the operating voltage DoD max maximum discharge depth T cf the temperature correction factor η inv the inverter efficiency η b the battery efficiency.
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 3 Figure 3 is proposed. R s (t), R 1 (t) and R 2 (t) are nonlinear parameters. They indicate respectively the internal resistor, the charge transfer and the diffusion process resistor. The non-linear parameters C 1 (t) and C 2 (t) indicate respectively the capacitors' capacities related to the charge transfer impedances and the diffusion process. The model parameters are validated from experimental tests in the work [10] [21]. The voltages V ocv, V 1 (t),V 2 (t) and V T refer respectively to the open circuit voltage, the voltage drop during charge transfer, the voltage drop during the diffusion process and the terminal voltage of an ebike battery cell. The charging current is negative when charging and positive when discharging.
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 2 Figure 2. electrical equivalent model of an A123 Li-ion cell
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 10 Figure 10. cost convergence curve

Table (

 ( III) B. Available power from solar pannels and wind turbine Data used in this work for sizing the charging sation are those of year 2019 (January 1, 2019 to December

	Table I.	CHARGING PROFILE SIMULATION PARAMETERS
		cells type	Li-ion A123,26650
	Initial surface temperature, Tso	25 o C	
	initial internal Temperature, Tco	25 o C	
		initial charging current, I	10 (A)	
		final charging current, In	0 (A)	
		nominal capacity, Cn		2.5Ah	
	Surface charging capacity: Cs	62.8J.K -1	
		Internal heat capacity Cc	4.5J.K -1	
	heat conduction resistance Rc	62.7K.W -1	
		convection resistance Ru	3.19K.W -1	
		ambient temperature: Tamb	25 o C	
		cut-off voltage		3.6V	
		minimal voltage		3V	
		final state of charge , SOC	95%	
		number of cells		12 cells	
		Table II.	INPUT PARAMETERS FOR PSO
	parameters		significations		values
	N min	minimal number of PV, wind, storage battery		1
	Nmax	maximum number of PV, Wind, storage battery	30
	Maxit		maximum iteration		30
	p		number of particle	500
	c 1		local acceleration coefficient	2.05
	c 2		global acceleration coefficient	2.05
	wmax		maximum coefficient of inertia		0.9
	w min		minimum coefficient of inertia		0.4
	i		annual interest rate		0.6
	i nf		inflation factor		0.04
	η ond		inverter efficiency	0.95
	vr		nominal wind speed	12 m/s
	v cutin		wind cut-in speed	2 m/s
	vcutout		wind cut-out speed	45 m/s
	AD		number of autonomy days		1
	V B		storage battery voltage	12 volt
	T cf		temperature correction factor		0.8
	Table III.	INPUT PARAMETERS FOR COMPONENTS
	components	power	lifetime initial cost	A	maintenance costs
			(year)	(euro)	(without units)	(euro)
	PV	270 (Wc)	25	191	0	1.91
	wind	3.2 (kW)	25	309	0	3.09
	regulator		25	397	1	3.97
	battery	1.56 kWh	10	345	2	3.45
	inverter	3 kVA	15	1272	1	12.72

31, 2019). In figure

7

, one month profile is presented, showing PV/wind power production from the december 01, 2019 to dec 31, 2019. They are obtained from the soda site

[START_REF]MERRA[END_REF] 

Table IV .

 IV 

			SIZING RESULT	
	Items	solar panel	wind turbine storage battery
	number	1	1	1

Table VI .

 VI 

		COSTS OPTIMIZATION PROFIT
	cost without	optimized cost	profit	cost reduction
	optimization	with PSO		
	4681.9 euros	2055.6 euros	2626.9 euros	56.11%
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