Capacitive approach to restore decoupling between channels for four-element MR coil array

A.L. Perrier, D. Grenier, N. Ravel, P. Litaudon, O. Beuf

To cite this version:

HAL Id: hal-01814482
https://hal.univ-smb.fr/hal-01814482
Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Capacitive approach to restore decoupling between channels for four-element MR coil array.

A. L. Perrier, D. Grenier, N. Ravel, P. Litaudon and O. Beuf

Multi-channel coil arrays are increasingly being used to improve Signal-to-Noise Ratio (SNR) in Magnetic Resonance Imaging (MRI). The decoupling between coils is an important parameter in array design. Indeed coupling between elements affects resonance frequency of each single coil and decreases it sensitivity. Many solutions were developed to achieve decoupling between elements of multi-channel coil array. In this paper, we present a capacitive solution to restore channel decoupling of a specific four-channel receiver coil array using common conductors. The principle of an effective decoupling was first demonstrated by circuit simulations of $|S|$-parameters. A receive-only four-channel coil array was design for rat head MRI. Experimental $|S|$-parameter measurements validated the proposed capacitive approach by restoring decoupling between elements and particularly between external loops.

Introduction: The Nuclear Magnetic Resonance (NMR) multi-channel coil arrays introduced in 1990 [1] are used to increase sensitivity of MR coils while preserving a large volume of exploration. The basic idea is to use the juxtaposition or overlapping of several single loops. These loops are usually connected to low input impedance and low noise preamplifiers to reduce the coupling between the different elements of the array and to preserve SNR respectively. Recent works described other decoupling techniques such as strip transmission line array [2], overlap geometries [3] and capacitive decoupling networks [3, 4]. A different solution for two-channel coil arrays was also described. In this setup, single elements of the array are not juxtaposed or overlapped but elements are electrically jointed with a common conductor [5, 6, 7]. Based on this specific approach, a newly designed four-channel coil array was proposed [8].

Principle: The equivalent electrical circuit of a four-channel coil array based on common conductor architecture is presented in Fig.1 where inductors are representing conductor sections. At the operating frequency, C_a and C_c capacitance values are chosen to compensate imaginary impedance parts of the L_a and L_c inductance values, respectively. At the operating frequency, without L_{Par} parasitic inductances, these perfect compensations of impedance allow zeros of transmission between channels by deorting the ground plane to the black points labelled 3. This virtual ground plane between loops ensures the decoupling between channels [7, 8]. The three parasitic inductors L_{Par} coming from the experimental design of the coil array deteriorate zeros of transmission and lead to coupling between elements. In this paper, we propose a solution to restore the decoupling between elements by adding a C_{Par} capacitor in series with the central L_{Par} inductance. This solution is illustrated in “Simulated results” section with circuit simulations of Fig. 1 topology and in “Experimental results” section with measurement of a four-channel coil array described in “Design” section.

![Fig. 1 Equivalent electrical circuit of a four-channel coil array with common conductors.](image)

Design: A specific four-channel receiver coil array was built on a flexible substrate and glued on a cylinder to fit the animal morphology. Loop inductors were realized with 35 μm thick and 4 mm width section of copper tape. Each element of the coil consists in a rectangular loop with 20x24 mm2 internal and 28x32 mm2 external dimensions. To decouple the receiver array from the transmitter coil, each loop integrates an active decoupling circuit made with two DH80055 PIN diodes. Four 50 Ω BNC cables were soldered at the four loops inputs to connect the coils with the acquisition data cabinet integrating transmit/receive switches and preamplifiers of MR system. The C_a and C_c were chosen to be adjustable elements for the four-channel coil array. Matching of each loop to 50 Ω at $f=300$ MHz (proton Larmor frequency at 7 T static magnetic field) was realized using varicap diodes BB149. The capacitance values of these diodes ranged from 2 pF to 22 pF for a bias voltages between -30 V and 0 V. Fixed capacitors are non magnetic case A series 100 ATC capacitors. All fixe capacitors are experimentally adjusted to minimize all $|S|$ dB parameters. A photograph of the coil array is shown in Fig. 2.

![Fig. 2 Photograph of the four channel coil array built for rat head.](image)

Simulated results: Circuit simulations realised with Designer software. The influence of L_{Par} and C_{Par} component values on the $|S|$ parameters is shown in Fig. 3. Simulations were achieved for an arbitrarily chosen value of coil inductors and for a 300 MHz operating frequency. The equivalent electrical circuit of Fig. 1 was simulated with all L_a, L_c, and L_{Par} values equal to 10 nH; R was fixed to 1.1 Ω. To compensate imaginary part of inductors at the operating frequency, capacitors C_a and C_c were fixed to 28.1 pF. C_{Par} capacitors were fixed to 4.5 pF and 24.2 pF respectively. Fig. 3a shows the identical coil with perfect decoupling between channels at the operating frequency without L_{Par}. C_{Par} components: all $|S|$ parameters are lower than -30 dB at the operating frequency. Fig. 3b presents the decoupling deterioration due
to the three 10 nH parasitic inductances L_{par}. $|S_{ij}|$ parameters are increased at the operating frequency and curve minima are shifted. Fig. 3c and Fig. 3d present the restoration of decoupling between channels by additional C_{par} capacitors equal to 28.1 pF. It can be noticed on simulated results that a single C_{par} capacitor on central section (Fig. 3c) is sufficient to restore an acceptable decoupling. This solution was chosen for practical realisation of the array.

Experimental results: $|S|$-parameter measurements of the four-channel coil array were carried out with an Agilent E5071C four-port VNA (Agilent Technologies Inc., Santa Clara, CA, USA). Results of coil array described in “Design” section are presented in Fig. 4a. $|S_{ij}|$-parameters perform better than -20 dB and characterizing each coil matching at the resonant frequency. $|S_{ij}|$ parameter value is about -7 dB which is not sufficient to decouple external loops. This $|S_{ij}|$-value is accentuated by magnetic coupling compare to circuit simulation (Fig 3b). All other coupling parameters are inferior to -16 dB at the centre frequency. In Fig. 4b a 24.8 pF capacitor is added in series with the central L_{par} of the coil array. At the operating frequency, the $|S_{ij}|$-parameters are below -20 dB. These values allow the use of the coil array for MR imaging without coupling between channels.

Conclusion: A capacitive solution to achieve decoupling between elements of a particular four-channel coil array based on common conductors was first demonstrated by circuit simulations of an equivalent electrical circuit. The solution was validated by the experimental $|S|$-parameters measured on four-channel coil array dedicated to rat head: a coupling lower than -20 dB was obtained between elements at the operating frequency.

Acknowledgments: The authors thank the Institut Féfératif des Neurosciences de Lyon (IFNL) for financial support. This work was supported by an ANR grant (#ANR-07-NEURO-030).

A. L. Perrier, D. Grenier and O. Beuf (Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon1, Villeurbanne, France)

E-mail: anne-laure.perrier@univ-lyon1.fr

N. Ravel and P. Litaudon (Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, France)

References

