Boris Mansencal 
  
Jenny Benois-Pineau 
  
Hervé Bredin 
  
Alexandre Benoit 
  
Nicolas Voiron 
  
Patrick Lambert 
  
Georges Quénot 
  
IRIM at TRECVID 2016: Instance Search

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The TRECVID 2016 instance search task is described in the TRECVID 2016 overview paper [START_REF] Smeaton | Evaluation campaigns and TRECVid[END_REF][START_REF] Awad | TRECVID 2016: Evaluating Video Search, Video Event Detection, Localization, and Hyperlinking[END_REF].

A new type of query was introduced in 2016, asking to retrieve specific persons in specific locations.

The dataset consists in videos from the BBC East-Enders soap opera. 10 locations (Cafe1, Cafe2, Foyer, Kitchen1, Kitchen2, Laundrette, LivingRoom1, Livin-gRoom2, Market and Pub) and 7 persons (Brad, Dot, Fatboy, Jim, Pat, Patrick and Stacey) are considered. 30 mixed queries or topics are built from these: Jim in Pub or Pat in Kitchen1 for example.

Three French laboratories (LaBRI, LIMSI, LIS-TIC) as part of IRIM consortium (coordinated by Georges Quénot, LIG) collaborated to participate to the TRECVID 2016 instance search task.

The IRIM approach to retrieve the shots containing a specific person at a specific location consists in three steps: first face recognition and location recognition are performed independently, then a late fusion is applied.

Face recognition

The face recognition method developed by LIMSI is derived from the work described in [START_REF] Bredin | Improving speaker diarization of TV series using talking-face detection and clustering[END_REF].

LIMSI method

The face recognition module is actually built upon three submodules. First, shot boundaries are detected using optical flow and displaced frame difference [START_REF] Yusoff | A Study on Automatic Shot Change Detection[END_REF]. Then, face tracking-by-detection is applied within each shot using a detector based on histogram of oriented gradients [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF] and the correlation tracker proposed in [START_REF] Danelljan | Accurate Scale Estimation for Robust Visual Tracking[END_REF]. More precisely, face detection is applied every 500ms, and tracking is performed at 25fps in both forward and backward directions. Finally, each face track is then described by its average FaceNet embedding and compared with that of the target person using the euclidean distance [START_REF] Schroff | FaceNet: a Unified Embedding for Face Recognition and Clustering[END_REF].

Two variants were tested, that differ only in the way the target embeddings were obtained. In the first case, we apply face detection on the four provided example images and use the average FaceNet embedding. In the second case, we search the test set for the face tracks corresponding to the provided example images and use face track average FaceNet embeddings -hopefully making the resulting embedding less sensitive to pose and illumination variability. The results obtained by these two variants are hereinafter referred to respectively as faceA and faceE.

The source code for this module is available in pyannote-video [START_REF] Bredin | pyannote-video: Face Detection, Tracking and Clustering in Videos[END_REF], that was initially introduced in [START_REF] Bredin | Improving speaker diarization of TV series using talking-face detection and clustering[END_REF]. Practically, we relied on dlib machine learning toolkit [START_REF] King | Dlib-ml: A Machine Learning Toolkit[END_REF] for face detection [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF] and tracking [START_REF] Danelljan | Accurate Scale Estimation for Robust Visual Tracking[END_REF], and on Openface [START_REF] Amos | OpenFace: A general-purpose face recognition library with mobile applications[END_REF] for FaceNet embeddings [START_REF] Schroff | FaceNet: a Unified Embedding for Face Recognition and Clustering[END_REF].

Location recognition

For location recognition, two methods were developed by LaBRI and LISTIC

LaBRI method

Similarly to INS 2014 LaBRI method [START_REF] Ballas | IRIM at TRECVID 2014: Semantic Indexing and Instance Search[END_REF], the classical Bag-of-Words (BoW) approach was followed. It consists in the following. First, features are detected on regions of each image and described by a feature descriptor. Feature descriptors are then quantized into visual words, creating a visual vocabulary. A similarity is then computed between histogram of quantized features of query image and those of database images.

For features detection, the Harris-Laplace detector was used. Detected interest regions are then described by the OpponentSIFT descriptor (of dimension 384). The RootSIFT [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF] post-processing step is applied.

Approximate k-means algorithm [START_REF] Philbin | Object Retrieval with Large Vocabularies and Fast Spatial Matching[END_REF] is then used to compute a vocabulary of k=1M visual words. Vocabulary on Opponent SIFT descriptors was computed on 24K randomly selected frames from the shots, with one image extracted per shot (that is 5% of the 471K shots). Hard assignment was used to compute the BoW vector. This vector was then weighted by the tf-idf scheme.

To compute shot signatures, a temporal aggregation was used. Several keyframes were uniformly extracted per shot, at a given framerate. A global histogram was computed for all the keyframes of the shot and averaged over the shot. This is the joint average scheme or average pooling used in [START_REF] Zhu | Query-Adaptive Asymmetrical Dissimilarities for Visual Object Retrieval[END_REF]. This histogram was then L1-normalized. Keyframes were extracted at a rate of 1 fps (that represents ∼1.57M images for the 471K shots).

We used a dissimilarity, noted L 1 p that corresponds to the L 1 distance computed on the non-zero subspace of the query, i.e., L 1 distance is only computed for the words present in the query. Then a similarity s = 1 L1p+ is computed from this dissimilarity. Our L 1 p dissimilarity can be computed efficiently with the help of an inverted file.

For queries, signatures of shots from which are extracted the example images are used. Each example image e, of each location l, is queried against each shot s, to obtain a similarity Sim(e, l, s). A late fusion operator f 1 is applied to get a similarity Sim(l, s) for each location l with regard to each shot s. The MEAN operator was first chosen for f 1 .

Characters filtering

As EastEnders is a soap opera, scenes consist mainly in two or more characters interacting at a given location. Besides, numerous shots present main characters, shot in close-up, talking to each other, and with not much motion. So a significant part of the features extracted for a frame and even a shot is detected on characters. To compute a shot signature that better represents the location, we want to remove all the descriptors detected on characters and keep only those corresponding to the actual location. Hence, we tried to detect characters to filter out features detected on them.

To detect characters, we took advantage of the face detection already performed for the face recognition step (cf 2.1). From a face bounding box, we construct a bounding area that roughly encompasses the character bounding box. Figure 1 gives an example of such a construction. It is a very coarse approximation of the person bounding box, but it is very fast to compute. Detected features are then filtered keeping only those outside these bounding areas. This filtering process is applied to all the keyframes extracted for the shot. The results obtained by this method are hereinafter referred to as loc1.

LISTIC method

Location detection at LISTIC has been experimented using a Deep Convolutionnal Neural Network (DCNN) pre-trained on a generic place recognition task and followed by a metric enabling adaptability to the specific INS task location targets. The considered DCNN is used as a feature extractor and is not retrained nor fine tuned. Only the 90 instance location images describing the 10 location targets have been considered for reference features extraction. Each test video shot is described from the features extracted across 10 images regularly sampled along time. Location matching is ensured by an Euclidean based metric.

DCNN features extraction

The pre-trained Places205 GoogLeNet model proposed by [START_REF] Zhou | Learning Deep Features for Scene Recognition using Places Database[END_REF] has been chosen. This model takes as input a color image re-sized at resolution (224*224) and its top layer generates a normalized probability distribution of size 205 which corresponds to the 205 classes to be recognized on the MIT places database. Such network is a very generic places classifier trained on worldwide areas such as airport terminal, bar, hospital, living room. INS location instances partially match those, in addition provided examples exhibit strong intra instance variability and strong inter instance similarity. As an example, Cafe1 and Cafe2 both resemble to each other and have a kitchen connected to the main room. In this context, one will be able to study the discrimination power of such "generic" location detector on the very specific INS targets.

First, the layer generating the most discriminating features on the INS task has to be chosen. In a DCNN, any layer can be considered but the last ones are generally the most interesting since they generate highly generic signatures aggregating lower level features. However, the very last layer is generally specifically adapted to the initial training goal so that the previous ones can be preferable when considering new data and new tasks. As a preliminary step, the confusion matrix obtained over the 10 instance locations has been computed using euclidean distance between either the outputs of the last pooled feature layer pool5/7x7 s1 or the final softmax layer prob. For that purpose, a 1-NN search is performed over the 90 instance location example feature vectors and matched location IDs are used to feed the confusion matrix. Figure 2 shows that the soft max probability layer is less discriminating than pool5/7x7 s1 that already shows a good detection behavior. However, some confusion can be observed for resembling locations, in particular Cafe1 and Cafe2 and LivingRoom1 and LivingRoom2.

This first evaluation shows the challenge for instance detection from few samples without retraining. One then has to design a metric and identify strategies for enhanced place detection. In the following, each location instance example and any video frame from the test collection is described by its feature vector obtained from pool5/7x7 s1 of the chosen DCNN.

Location detection

The example collection is composed of m = 90 examples of L = 10 locations (m = L i=0 #(examples, i)). We first compute the average distance between locations examples meanDistInterLocations. This reference will be used to normalize test shot distances to these examples.

On the test collection, a video shot can show various point of view of its location. Then, in order to facilitate location recognition, each video is described by a set of n = 10 frames regularly sampled in time all along the shot length. In the case of video sequences shorter than 10 frames, all the available frames are considered (in that case, n < 10).

Then, for each video shot s, a set of n * (n -1)/2 euclidean distances between each feature descriptors is computed and the minimum value is used as the reference denoted minDistIntra(s). This reference highlights a baseline related to intra shot distances. Next, for each location l, the set of n * #(examples, l) distances to location is computed and the minimum distance is kept as minDist(s, l). Various similarity metrics have been experimented and minimum intra shot distance was chosen in order to enhance similarity values.

Finally, a similarity measure Sim(s, l) is computed following eq. 1.

Sim(s,l)=1-max 0,min 1, minDist(s,l)-minDistIntra(s) meanDistInterLocations-minDistIntra(s) .

(

) 1 
Such similarity metric is normalized with respect to the inter location distances (from the few provided examples) and the intra shot distance.

From a computational point of view, this approach is mostly impacted by neural network inference processing time and a shot can be ran in 900ms on a computer based on a NVIDIA K80 GPU.

The results obtained by this method are hereinafter referred to as loc2.

Results filtering

Two filtering steps may be applied to the results of queries.

Credits filtering

The videos from the dataset may contain extra shots unrelated to EastEnders soap opera. In particular, they often contain advertising at the end. As these videos often have opening and end credits, we can detect those in order to remove unrelated shots from re-sults. More precisely, we need to detect the last frame of the opening credits and the first frame of the end credits.

One difficulty is that the credits are not exactly the same in all the videos. Figure 3 shows examples of frames used for credits. To detect opening and end credits respectively last and first frame, we use a near duplicate frame detection method. The last frame of opening credits is searched from the start till the N 1 -th frame of the movie. The first frame of the end credits is searched from the N 2th frame of the movie till the end of the video. N 1 is arbitrarily set to 3500. N 2 is computed to be 97% of the movie length. On these segments, we compute the minimal distance between the current frame and a set of example frames (see Figure 3). The distance is computed as one minus the correlation of the histograms (of 32 bins) computed on the luminosity channel of the two frames. If the minimal distance is below a fixed threshold, frames are considered to be duplicate.

If the end (resp. start) of the opening (resp. end) credits is found, the similarities of shots corresponding to frames before (resp. after) this frame are substantially lowered. This filtering operation is hereinafter referred to as p c . The new similarity p c (sim) is computed as a fraction of the current similarity sim: p c (sim) = α c * sim, with α c respectively set to 0.1 and 0.2 for opening and end credits.

Shot threads clustering

Inspired from [START_REF] Tapaswi | Sto-ryGraphs: Visualizing Character Interactions as a Timeline[END_REF], we compute shots threads, that is temporally constrained clustering of shots that appear similar (via SIFT matches).

From these, a filtering step of results is derived where similarities of shots belonging to the same shot thread (or cluster) are combined with a fusion operator.

This filtering operation is hereinafter referred to as p t .

We denote the combination of functions p t and p c as p: p = p t • p c .

Late Fusion

Once the scores for the face recognition and location recognition steps are computed, we apply a late fusion operation, denoted g. We keep only shots present in both results. As scores are of different nature (distances for faceA and faceE, similarities for loc1 and loc2), we apply the fusion operator on the ranks. For two ranks rank1 and rank2, the chosen operator g is a simple linear combination of the ranks:

g(rank1, rank2) = α * rank1 + (1 -α) * rank2 (2)
This operator is used to fuse face and location results, denoted g f l , or two locations results, denoted g ll .

Evaluation of the submitted runs

Four runs were submitted:

• F E IRIM 1 = g f l (f aceE, g ll (p(loc1), p(loc2)))

• F E IRIM 2 = g f l (f aceE, p(loc1))

• F A IRIM 3 = g f l (f aceA, p(loc2)) • F A IRIM 4 = g f l (f aceA, loc2)
F A IRIM 4 and F A IRIM 3 differ only in the use of the filtering steps (with credits and shot threads) in the latter. F E IRIM 2 differs from F A IRIM 3 both in the face and location results used. F E IRIM 1 is similar to F E IRIM 2, but uses a combination of both location results.

In these runs, both the fusion operator f 1 used for loc1 (cf section 3.1) and p t used in p operator (cf section 4.2) were the MEAN operator.

Table 1 presents the result obtained by the four runs submitted as well as the best and median runs for comparison.

In order to understand why our results are so low, we need some groundtruth. With the results, NIST also provided the groundtruth for mixed queries ( in location L). But to assess the individual results of our location or face recognition methods, we need individual groundtruth for locations and persons. To this end, we have first derived individual groundtruth from the NIST provided groundtruth. Indeed as we have the groundtruth for a person P in locations L1, ..., L n , we can extract the individual groundtruth for P as the union of all groundtruth relative to P . Likewise, we have the groundtruth for persons P 1, ..., P n in location L, we can extract the individual groundtruth of L as the union of all groundtruth relative to L. The groundtruth extracted this way is hereinafter referred to as GT N IST . However this extracted groundtruth GT N IST is rather limited: the number of shots annotated for each person or location is low. It does not allow to assess correctly our individual methods. For example, our f aceE results for person P may contain correct results, but as person P is not in one of the location queried for INS2016 they are not in GT N IST . So we undertook to complete the available groundtruth to have a better assessment of our methods. As it is a very time consuming task, we used a very simplified process. For a given concept (person or location), we annotated the relevance of a shot, only by looking at one of its keyframe. If the concept was present (resp. missing) in the keyframe without ambiguity, we annotated the shot as relevant (resp. non relevant). If there was a doubt, the shot was skipped. We tried to annotate at least (most of) the 4000 first ranked shots returned by each of our methods. Applying this process, we have completed the GT N IST groundtruth for three locations (Laundrette, LivingRoom1, Pub) and four persons (Brad, Dot, Fatboy, Jim). This new groundtruth is denoted GT IRIM . Table 2 presents the number of relevant shots in the two groundtruths, as well as the number of annotated shots for these concepts. It is noteworthy that the relevant shots for location L i can be used as non-relevant shots in groundtruth for location L j , for j = i. But we can not do the same for persons (presence of person P i does not say anything about presence of person P j ). Nevertheless, even with this simplified process, annotation stays a tedious task and our groundtruth GT IRIM is still very incomplete.

For Laundrette, only 30444 on 471K shots were annotated, that is 6.45% of the total number of shots. For Jim, it is only Although incomplete, this groundtruth helped us to start refining our methods. We denote loc1 the results of our loc1 method were the fusion operator f 1 is changed from MEAN to MAX. Identically, we change the fusion operator p t used to fuse results for shots belonging to the same shot thread from MEAN to MAX, denoted as p t . We denote the combination of functions p t and p c as p , such as p = p t • p c . Table 4 presents the results of these modifications on the three locations augmented in GT IRIM . The results of method loc1 (first column) are much improved than the results of loc1 (cf table 3, first column for location). We can see that the filtering of the opening and end credits alone does not bring much improvement (second column vs first column). The filtering using the shot threads seems far more beneficial (third column vs first column). Combining the two filtering steps (by credits and shot threads) is marginally better (fourth row vs third row). However, despite correct results on individual methods, these results on mixed queries are still quite low.

It seems related to the fact that a person P or a location L may be present a high number of time in the 471K shots, but that the mixed query person P in location L is far more uncommon. To hope to have correct results for mixed query, as we use a late fusion on rank, we need to have a very high precision on individual person and individual location results. For example, for Brad, our face recognition method faceE, has a precision greater than 0.92 at rank 2000, 0.82 at rank 4000, 0.71 at rank 6000, on GT IRIM . So this character is rather well recognized. However, on GT N IST , that is Brad in Foyer, Kitchen1, Laundrette, LivingRoom1 or Pub, that corresponds to around 3000 shots, our recall is just 0.20 at rank 2000, 0.36 at rank 4000, 0.45 at rank 6000 and 0.55 at rank 10000. Thus, even at an elevated rank, our method has still not returned shots with Brad in the desired locations. This means that Brad is present in a very elevated number of shots, probably more than 10000. This entails that we should have a high precision on more than the first 10000 returned shots to hope to return the desired shots with Brad in the desired locations.

Conclusion

Our system proposes a simple scheme that combines face recognition and location recognition with late fusion.

Without any groundtruth, it was difficult to produce an effective system. The partial groundtruth we made helped us to understand where our system was failing.

Both our face and location recognition steps should be improved. In particular, several aspects of our methods seem to be worth investigating.

• The location recognition method based on BoW (loc1 ) when parametrized correctly gave encouraging results. In particular the character detection filtering, despite quite basic, could be explored.

• The location recognition method based on DCNN (loc2) did not give the expected results. Fine tuning on this data collection should be considered.

• Filtering by thread shots improved our results and should be further examined.

• Face recognition should also be improved. In particular with improved face detection, and a higher framerate, we could possibly improve our results.

Results of our system are still quite low, in particular compared to the best run on INS2016. We hope to improve them in the coming year.

Figure 1 :

 1 Figure 1: Example of a frame with characters bounding area computation and filtering of keypoints. (a) a keyframe with face detections as bounding boxes. (b) the bounding areas computed for characters. (c) the (3514) features detected on the whole frame. (d) the (2488) kept features after filtering thanks to characters bounding areas. Programme material copyrighted by BBC

Figure 2 :

 2 Figure 2: Places205-GoogLeNet location detection confusion matrices for layers pool5/7x7 s1 (left) and the final softmax layer prob (right).

Figure 3 :

 3 Figure 3: Examples of opening and end credits frames. (a), (b) and (c) show different opening credits last frame examples. (d) shows an example of first frame of end credits, with the start of the rolling credits at the bottom. Programme material copyrighted by BBC

Table 1 :

 1 IRIM, best and median runs results among the 41 fully automatic INS submitted runs.

	person P

Table 2 :

 2 Number of relevant and annotated shots in groundtruths GT N IST and GT IRIM .Table3presents the MAP obtained for our individual methods on each completed concept in groundtruth GT IRIM . We can see that both our location recognition results, loc1 and loc2, are quite low. For face recognition, faceE is often better than faceA, but not always (for Dot for example). In particular, for Jim, the results are also quite low.

	1.27%.		
		#relevant	#relevant	#annotated
	concept	shots	shots	shots
		GT N IST	GT IRIM	GT IRIM
	Laundrette	696	4769	30344
	LivingRoom1	2786	2852	25178
	Pub	5218	10444	25716
	Brad	2988	6420	11380
	Dot	4443	8248	18839
	Fatboy	824	3115	7723
	Jim	503	802	5979
	location	method	loc1	loc2
	Laundrette	0.1262 0.4371
	LivingRoom1	0.2671 0.1517
	Pub		0.1587 0.2096
	person	method	f aceA f aceE
	Brad		0.4714 0.6479
	Dot		0.5340 0.3667
	Fatboy		0.5880 0.6531
	Jim		0.0263 0.2139

Table 3 :

 3 MAP for individual methods on individual concepts (location or person) against GT IRIM .

Table 4 :

 4 MAP for modified methods on augmented locations in GT IRIM .Table5presents the results of the late fusion between loc1 and loc2, with g ll operator used with an optimal α = 0.95, and with the two filtering steps applied. Compared to the results of loc1 alone (table 4, last column), results are improved.

	location	method	loc1	pc(loc1 ) p t (loc1 ) p (loc1 )
	Laundrette	0.5251	0.5266	0.6783	0.6793
	LivingRoom1	0.6281	0.6281	0.7229	0.7242
	Pub		0.3285	0.3285	0.4024	0.4176
		location	method g ll (p (loc1 ), p (loc2))
		Laundrette			0.7245
		LivingRoom1		0.7542
		Pub			0.4678

Table 5 :

 5 MAP for fusion of loc1 and loc2 results on augmented locations in GT IRIM . Table6presents the results that would have been obtained by these two runs (so assessed with NIST provided groundtruth, not GT N IST nor GT IRIM ). We see that our results are improved, with F E IRIM RUN1 above the median (cf table1).

	This improved individual method loc1 was used to
	update two of our runs, denoted F E IRIM RUN1
	and F E IRIM 2 . rank System/run	MAP
	(17) F E IRIM 1 0.1455
	(22) F E IRIM 2 0.1302

Table 6 :

 6 Corrected IRIM runs results among the 41 fully automatic INS submitted runs.
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