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The Component Based System (CBS) paradigm is now largely used to design software systems. In addition, performance and behavioural analysis remains a required step for the design and the construction of efficient systems. This is especially the case of CBS, which involve interconnected components running concurrent processes. This paper proposes a compositional method for modeling and structured performance analysis of CBS. Modeling is based on Stochastic Well-formed Nets (SWN), a high level model of Stochastic Petri nets, widely used for dependability analysis of concurrent systems. Starting from the definition of the system given in a suitable Architecture Description Language, and from the definition of the elementary components, we build an SWN of the global system together with a set of SWNs modeling the components of the CBS and their connections. From these models, we derive performances of the system thanks to a structured analysis induced by the structure of the CBS. We describe the application of our method through an example designed in the framework of the CORBA Component Model.

Introduction

Recent software systems are more and more being designed as a set of components assembled together and interacting to achieve a common goal [START_REF] Bertolino | Software performance engineering of componentbased systems[END_REF]. This compositional approach has captivated many industrial developers as it allows higher maintainability, reuse, easier upgrade and dynamic reconfiguration. A system is therefore seen as an assembly of components. Such architectures are known as Component Based Systems (CBS). Since the mid'70, several component models have been proposed in the literature [START_REF]Common object request broker architecture (CORBA)specification, version 3[END_REF][START_REF]J2EE connector architecture[END_REF][START_REF] Bruneton | Recursive and dynamic software composition with sharing[END_REF][START_REF] Seinturier | état de l'art sur les modèles de composants pour le temps réel et l'embarqué[END_REF], and some of them are used in industry.

In this context, a software component can be a source code unit (consumed at development time and architectural design time), or a unit of deployment (machine executable). It can also be a unit of versioning and replacement [START_REF] Szyperski | Component technology -what, where, and how?[END_REF]. It is defined as a unit of composition with contractually specified interfaces and explicit context dependencies.

Although there is no unique definition of what is a component, authors consider that the definition of a component is made of a behaviour (implementing functionalities) and one or several interfaces. Interfaces are used to assemble components, depending on their interaction, specifying required or offered services. Components can be assembled or composed to form a software application or system, according to their specified interactions.

Many design frameworks for CBS exist, each one being based on a component model defining more or less precisely the semantics of the components and of the assembly. To allow definition of a CBS, several component models have been introduced, even for academic or industrial purposes. Among the large number of component models proposed in the literature, either industrial or academic, we may quote EJB, CCM, COM+/.net, Fractal, JMX, PECOS, Koala, IEC61499,... [START_REF]CORBA component model specification. version 4.0[END_REF][START_REF] Müller | Components@work: Component technology for embedded systems[END_REF][START_REF] Bruneton | The fractal component model, version 2.0-3[END_REF]. For most of these models, an Architecture Description Language (ADL) [START_REF] Medvidović | A classification and comparison framework for software architecture description languages[END_REF] allows us to describe an assembly of components. From this description, a set of accompanying tools generate, at least, the templates of the application code and perform some verifications such as data type compatibilities.

The component based approach is a smart approach providing significant benefits. However, designers of CBS should have some assurance that the assembly they define meets performances expected by users (for instance avoiding contention and bottlenecks). Moreover, if large architectures of CBS are involved, such properties are difficult to derive. So, it is necessary to develop methodologies and tools allowing qualitative and quantitative analysis of CBS, to support designers in their activities.

In this area, prediction methods for performance and behavioural qualitative analysis of CBS are still scarce: [START_REF] Barros | Model checking distributed components: The Vercors platform[END_REF][START_REF] Barros | Behavioural models for hierarchical components[END_REF] used Labelled Transition Systems (LTS) and model checking in order to prove temporal logic properties of a Fractal CBS; [START_REF] Da Silva | Composition of software artifacts modelled using colored Petri nets[END_REF] used hierarchical coloured Petri nets and temporal logic for the specification and verification of software components designed for embedded systems. [START_REF] Rugina | A system dependability modeling framework using AADL and GSPNs[END_REF] translates the description of a system given in the ADL AADL into a Generalized Stochastic Petri Net (GSPN) for dependability measures purpose. These attempts addressed mainly qualitative or deterministic time based analysis, whereas performance analysis is usually carried out through measures and testing techniques on existing systems. . It is well known that limiting performance analysis to existing systems impacts the quality of the software product [START_REF] Weyuker | Experience with performance testing of software systems: issues, an approach and case study[END_REF]. In fact, some predictive performance modeling was also proposed as in [START_REF] Smith | New book -performance solutions: A practical guide to creating responsive, scalable software[END_REF] . This approach translates architecture designs, mostly given in the Unified Modeling Language (UML), into models adequate for performance analysis. Adapted formalisms used for thes analysis are Layered Queuing Networks (LQN) [START_REF] Petriu | Architecture-based performance analysis applied to a telecommunication system[END_REF], Stochastic Petri Nets (SPN) and Stochastic Process Algebras (SPA). Following this method, [START_REF] Bernardi | Implementing compositionality for stochastic Petri nets[END_REF], [START_REF] Grassi | Filling the gap between design and performance/reliability models of component-based systems: A model-driven approach[END_REF] proposed to start from a design model and build a performance analysis model based on LQN. However, we claim that UML and queueing networks are not sufficiently expressive to model complex systems, where important characteristics are synchronization, resource contention and conflicts. Moreover, the method should be able to handle large architectures.

For these purposes, we propose in this paper a structured approach for performance analysis of CBS, trying as much as possible to reduce the complexity of analysis and allowing us to analyse large architectures. We first introduced our approach in a previous work [START_REF] Salmi | Structured analysis of component based systems: an EJB/CORBA middleware application[END_REF], with an example of performance analysis of an Enterprise JavaBeans /Common Object Request Broker infrastructure.

The approach, summarized in figure 1 (this figure only appear in colour in the online version of the paper, not the printed version), starts from the architecture description of the CBS, provided in an ADL, models components, derives the CBS global model and finally applies a structured compositional method to derive performance indices. The models can be saved in a repository for reuse in analysis of other CBS. Components are modeled with Stochastic Well-formed Net (SWN) [START_REF] Chiola | Stochastic wellformed colored nets and symmetric modeling applications[END_REF], a special class of Stochastic coloured Petri Nets, widely used for performance analysis of complex systems showing symmetrical behaviour of active entities. We first translate component interfaces and interactions in the SWN context. We model these interactions and we show how to build the global SWN of the CBS. Finally, we apply a structured method, derived from our previous works [START_REF] Delamare | Efficient implementation for performance evaluation of synchronous decomposition of high level stochastic Petri nets[END_REF][START_REF] Delamare | Performance evaluation with asynchronously decomposable SWN: implementation and case study[END_REF], allowing us to compute performance indices in an efficient way, through exploitation of the compositional architecture. Computations are based on a combined aggregation/tensorial representation of the underlying Markov chain of the global SWN, which reduces the complexity of analysis, with time and memory savings. We extend this method to the analysis of CBS with synchronous and asynchronous interactions (compositions) of SWN corresponding to components, since the previous method was defined to the analysis of either a synchronous decomposition or asynchronous decomposition of a global SWN. In previous works [START_REF] Salmi | Formal models of fractal component based systems for performance analysis[END_REF][START_REF] Salmi | Performance evaluation of fractal component based systems[END_REF], we have studied modeling and performance evaluation of the Julia implementation of FRACTAL based CBS, which provides synchronous interactions between FRACTAL components. The present paper extends this work to more general CBS with synchronous and asynchronous event-based interactions between components.

Among several component models, we have chosen to illustrate our approach with the Corba Component Model (CCM) [START_REF]CORBA component model specification. version 4.0[END_REF]. CCM is indeed a language-neutral model, taking into account the two classical interaction modes between components: request/response and event-based.

The structure of the paper is as follows. We present in section 1 the main features of a CBS, illustrated with the CCM model. We also describe a CCM application, used as an example along the paper. We follow by giving an overview of our approach in section 2 and the details of the modeling steps of a CBS in section 3. We explain Figure 1: Principle of compositional analysis approach of CBS in section 4 our analysis method of a CBS, together with application of the approach to our example. We conclude and propose future work in section 5.

Component Based Systems

Concepts

A software component is defined as a unit of composition, provided with contractually specified interfaces and explicit context dependencies [START_REF] Szyperski | Component technology -what, where, and how?[END_REF]. An interface is an access point to the component, which defines provided or required services. In addition, types, constraints and semantics are defined by the component model in order to describe the expected behaviour at runtime.

Interfaces of a component allow it to connect to other components. Consequently, we build a CBS by connecting the interfaces of components. These connections are defined through interactions between components. Generally, two main styles of interactions are defined in component models: synchronous interactions provided by service invocation (such as RPC or RMI communication) and asynchronous interactions given through notification of events (asynchronous messages). Service invocations take place between a client interface requesting a service and a server interface providing the service. Besides, event communications are defined between one or more event source interfaces generating events and one or several event sink interfaces receiving event notifications. The reception of a notification causes the acknowledgement of the reception and the execution of a specified reaction called the handler of the event. Some event services use event channels for mediating event messages between sources and sinks. An event channel is an entity responsible for registering subscriptions of a specific type of events, receiving events, filtering events according to specific modes, and routing them to the interested sinks.

A component can contain itself a finite number of other interacting components, called sub-components, allowing the components to be nested into several levels. Such a component is called composite. Components of the lowest level are called primitive. Assembling two components may require an adaptation of associated interfaces, whenever these interfaces cannot directly communicate for example. In this case, the adaptation is done through an extra entity, called connector, modeling the interaction protocol between the two components.

For each component model, a corresponding Architecture Description Language (ADL) allows one to describe an assembly of components constituting an application. From such a description, a set of tools are used to compile and generate the application code, while checking syntactical and even some semantical properties.

CBS illustration : CCM based Systems 1.2.1 The CCM model

CCM [START_REF]CORBA component model specification. version 4.0[END_REF] is a key part of the CORBA 3.0 standard [START_REF]The common object request broker: Architecture and specification[END_REF], independent from operating systems and programming languages and allowing the deployment of components on a distributed environment.

Figure 2:

The CORBA component model A CCM component is an implementation entity, described by a set of attributes and a set of interfaces said ports (termed interfaces in the sequel). Attributes are named values exposed through accessor and mutator operations. There are two types of interfaces (figure 2), described in CORBA IDL3: facets and receptacles playing respectively the roles of either client and server interfaces or else event source and sink ports.

In order to support events, CCM follows the publish/subscribe event push model [START_REF]CORBA component model specification. version 4.0[END_REF], compatible with CORBA notification service [19]. This model defines two roles: publisher (event source) and subscriber (event sink). Subscribers register their interest for a class of events by subscribing to the publisher (or the channel) of this class of events. Communication between publishers and subscribers can be brokered through event channels. Note that subscribe/unsubscribe components operations are invoked at CBS deployment and (re)configuration time.

Unlike Fractal, CCM is a flat component model without hierarchy. Moreover, a CCM component is located inside a container which provides it the runtime environment and allows it to access a set of non-functional services such as persistence, event notification, transaction and security. Each container is responsible for initializing instances of the component types it manages, controlling their life cycles, and connecting them to other components and common middleware services, including event publisher/subscriber services and event channels. These services include non-functional properties provided by controllers in Fractal. A CCM application is built by defining an assembly, grouping components and defining metadata describing components.

A CCM application

Along this paper, we exemplify our approach with a stock quoter system, a CCM application managing a stock information database, inspired from a CCM example presented in [START_REF] Schmidt | Object interconnections: The CORBA component model: Part 2, defining components with the IDL 3.x types[END_REF]. It consists of two StockDistributor components monitoring a realtime stock database, two StockBroker components waiting for stock changes and an Executor component processing stock information (figure 3). When the value of a particular stock changes, a StockDistributor pushes a CCM event that contains the stock name, via a CCM event source, to corresponding CCM event sinks At reception of event notification, one of the StockBrokers invokes a service from the executor component through corresponding receptacle and facet interfaces, whereas the second StockBroker processes locally the event. The executor component processes the StockBroker request, generates data and invokes itself the persistence service offered by the container in order to save data. When no event is generated, the StockBrokers perform continually a local task.

Component based analysis approach overview

In this paper, we propose a qualitative and quantitative analysis approach for CBS, concentrating on performance properties. We use for this purpose the Stochastic Well-Formed Net model (SWN) [START_REF] Chiola | Stochastic wellformed colored nets and symmetric modeling applications[END_REF], a high level Petri Net model which describes systems in a concise way, and profits from symmetrical behaviours of a system for an efficient analysis.

Motivations for the SWN model

The choice of the SWN formalism is mainly motivated by three reasons. Firstly, in order to be able to evaluate performance indices related to configurations of systems, such as the number of requests pending in some part of the system, the mean utilization time of some resource, etc., a state based model like Petri nets is suitable. Petri Nets are also well known for being able to model complex systems with concurrency and conflicts, even in the stochastic context, in contrast with Queuing networks or process algebras models for instance. Secondly, although Figure 4: Analysis approach of CBS Petri Nets are not by themselves a compositional model, interaction between Petri nets representing sub-components may be defined as transition or place "fusion" (merging). Thirdly, if complex primitive components are involved, high level Petri Nets are almost inevitably required. As a high level model, the SWN Petri net model can also take advantage of behavioural symmetries of system's entities if there are such symmetries, by compacting its reachability graph, leading to a Symbolic Reachability Graph (SRG). An SRG is composed of symbolic markings, where each symbolic marking represents a set of ordinary (coloured) markings having equivalent behaviour. Finally, SWNs are a well studied class of high level stochastic Petri nets and benefit from a consistent set of analysis algorithms and tools [START_REF] Ilié | Extended SWN solvers in GreatSPN[END_REF].

Analysis steps

Our approach for analyzing a CBS consists of two main phases :

• building a global SWN model for the CBS, seen as a composition of SWN models associated to components and their interconnections, and

• applying a structured analysis method for the computation of performance indices.

These two phases are detailed through figure 4: 1. From the CBS description given using the ADL related to the component model, translation of the component behaviours (source code) and their interactions in the SWN context. We obtain a set of SWNs called Component SWNs (C-SWNs), (for components) and Interaction SWN (I-SWNs) (for complex interactions) involving connectors. This modeling depends heavily on the component model. 4. Finding of the set of SWNs (N k ) 1≤k≤K ′ representing a possible decomposition of the G-SWN, that fulfill conditions for a structured representation of the SRG and its aggregated generator. These SWNs can be one of the (SWN k ) 1≤k≤K or grouping together a subset of them.

5. Computation of performance indices by applying the structured analysis method [START_REF] Delamare | Efficient implementation for performance evaluation of synchronous decomposition of high level stochastic Petri nets[END_REF][START_REF] Delamare | Performance evaluation with asynchronously decomposable SWN: implementation and case study[END_REF].

In order to partly automate our approach, we explain each of these steps in the following.

SWN modeling for CBS

The first three steps of our approach are detailed in this section. Our aim here is to derive automatically a stochastic model for the CBS, to be used for efficient structured compositional analysis. A set of rules are therefore proposed for automatic translation of CBS descriptions in the SWN framework. We first discuss our modeling choices, then we detail modeling of interfaces of components and modeling of primitive and composite components.

General modeling choices

modeling stable configurations

Before being available to users, a CB application must be deployed and configured. These steps include, among others: initialization and runtime contexts definition, subscribing of components exposing an event sink for event notifications, etc. When these steps are completed, the application is activated. We say that it is in a stable configuration. During its execution, the application architecture may evolve through (runtime) reconfigurations, for instance by creating or deleting instances of components, subscribing/unsubscribing of components for a special type of event.

Although the capability of runtime evolution of the architecture is a leading property of several middlewares for CBS, it seems that behavioural analysis of CBSs cannot be efficiently carried out with a single formal model of the system. In fact, any modification of the architecture requires a specific modeling, primarily devoted to check that, starting from a configuration A, the application will eventually reach a given configuration B. In contrast, analysis of a given configuration (say A or B) addresses both qualitative (reachability, deadlock freeness, etc.), and quantitative (computation of performance indices) aspects of this configuration. Moreover, in the performance evaluation context, switching from A to B probably corresponds to a "short" time period (transient phase, finite horizon analysis), whereas we are interested in performance indices of software systems computed over long periods (steady-state analysis).

In the present work, we do not address the verification of the reconfiguration behaviours of CBSs and we concentrate on "stable" (i.e. fixed) architectures. Hence, we do not model non-functional services pertaining to initialization and reconfiguration steps. However, we can obviously compare performances of two configurations A and B, each one studied with our method.

Implementation dependencies

Since we wish to derive performance indices of a CBS, we emphasize that the architecture description of the CBS is not sufficient for performance modeling: it must be complemented with information from the implementation of the component model. Indeed, an implementation of a model can differ from another one. This is the case for instance, for the Fractal model: the Julia implementation uses synchronous method invocation, while Fractive uses an asynchronous (late) operation invocation.

Colours

Basic colour classes are used to model data entities and active entities of components. Data entities consist of data flow such as requests, parameters of requests, requested data, event data or even resources. Active entities are execution flows (processes and threads). In our context, we emphasize on modeling entities involved in interfaces and interactions, since entities used inside a component depend only on that component. More precisely, we adopt basic colour classes for modeling methods and their parameters invoked through interfaces, event types, possible resources and execution flows of a component. For this last purpose, we should know if the component is multithreaded or not. It could also be useful to "colour" event related data when messages associated to the events should be taken into account from a performance point of view.

modeling event entities

Event messages can be brokered through an event channel, depending on the specification of the component model. In this case, we discuss here the need for the explicit modeling of the event channel. In fact, when the event channel receives an event notification from the publisher, it generally acknowledges it (as it is done in CORBA [19]) and then it routes the notification to all interested subscribers. The event acknowledgement can be sent to the publisher as soon as the notification is received by the channel, or it can be delayed until the subscribers receive themselves the notification and acknowledge it. In order to obtain a flexible model for our components, it could be interesting to model explicitly the event channel to consider various cases of event acknowledgement. However, this may affect response times and performances of the whole system. Therefore, in order to take into consideration this influence, we choose to model explicitly the event channel.

Container services

A container acts as a component manager. It offers three kinds of services :

• Operations relating to component lifecycle, such as creating, deleting or modifying a component or a connection, etc.

• Operations relating to service invocations of components, and

• Calls to non-functional services offered by the operating system or a middleware, like transaction manager, security manager, event manager and persistence manager services.

Lifecycle and connections management is related to non stable configurations non covered by this paper, for reasons stated in 3.1.1. However, we model other container services which don't imply modification of the architecture. These services are considered as abstracted components endowed with their proper interfaces, and are modeled with SWN models as for components (see details in section 3.6).

We detail now the modeling phase, beginning with modeling interfaces of components, then components and finally the application.

Modeling client/server interfaces

A service invocation takes place by specifying the required method and its parameters. So, we translate corresponding interfaces of a component following the mapping rule. Mapping rule 1: client/server interfaces • A server interface, identified by a set of colours STh modeling possible server threads, offering a set MP of operations or methods with their parameters, is modeled by representing the beginning of service provided and its ending with two transitions, respectively t BP S and t EP S (figure 5 The model of a request/response interface depends a priori on the invoked method and its parameters. In our mapping rule, we do not separate them: if such a level of detail is required for performance analysis, a colour class is defined with static subclasses sorting the possible pairs (method, its parameters) into disjoint Let us give the formal definition of client and server interfaces; t • (resp. • t) denotes the set of output (resp. input) places of transition t.

Client interface: A client interface I of a C-SWN is of a couple of transitions (t BRS , t ERS ), such that:

• D(t BRS ) = D(t ERS ) = CT × M P (D(x) represents the colour domain of the node x); • t • BRS = • t ERS = ∅; • ∃!p BegReq ∈ P , ∃!p EndReq ∈ P , p BegReq = p EndReq , P re(p BegReq , t BRS ) = P ost(p EndReq , t ERS ) = Id.
Server interface: A server interface I of a C-SWN is a tuple < P I , T I > such that: transitions). This is achieved by applying mapping rules 2 and 3. The resulting CC-SWN keeps the same semantics as the corresponding C-SWNs. Mapping rule 3: Multiple clients for one server interface The interface part of the CC-SWN of a server interface which have multiple connected clients is modified as follows with respect to the single client case: (i) The transitions t BP S and t EP S of beginning and ending service are duplicated as many times as the number of client interfaces; (ii) An IDC colour class is introduced to distinguish between several components exposing a client interface. The resulting interface is given by figure 6.

• P I = {ServT H, SoM P, ResServ}; • T I = {t BP S , t EP S } with D(t BP S ) = D(t EP S ) = ST × M P × R; • P re(ServT H, t BP S ) = P ost(ServT H, t EP S ) = Id; • P re(SoM P, t BP S ) = P ost(SoM P, t EP S ) = Id. ServTH STh M0 ResServ R M0 Request STh,MP,R,IDC Result STh,MP,R,IDC SoMP MP M0 PBegReq1 CTh1 M0 PEndReq1 CTh1 PBegReq2 CTh2 M0 PEndReq CTh2 P10 CTh1,STh P11 CTh2,STh

Modeling event-based interfaces

Event based communication is generally realized following a specific pattern. Among the most representative patterns, we find the publish/subscribe model, used in the CORBA notification specification. In this specification, a publisher pushes an event of a specified type to subscribers through an event channel (a channel manages a specified type of events). The publisher component continues its work after emitting an event. The event channel receives the notification and acknowledges it to the publisher. Then, it sends the notification to all interested subscribers. When receiving an event, a subscriber acknowledges it and triggers a handler processing the event. This interaction model is translated with mapping rule 4 modeling the publisher, the event channel and the subscriber.

Mapping rule 4: Event interfaces (1)

• A publisher interface of a component, identified by a set PTh of colours modeling possible publisher threads, is modeled with a transition TNE representing the notification of events (figure 7, left), with Pthreads and Ack channel places as preconditions, and ReleasTh and SentEvents as postconditions.

• An event channel managing a set E of events of a specified type is modeled with two transitions TRE and TSE, expressing respectively receiving events from publishers and sending these events to subscribers (figure 7 In the event channel model, the Rec Events and SoE places model respectively received notifications and the set of possible events. Rec Events is not coloured. Postconditions of TE (CAck and GenerEvents) model respectively acknowledgement and generated events to be sent to subscribers. CAck is also not coloured, and GenerEvents has the same domain as SoE. The Ack subscrib place models the state of the channel ready to broadcast notifications to subscribers. It is also uncoloured like Ack channel of the publisher model. The SE channel place models events sent to subscribers by the channel.

In the subscriber model, local processing should be interrupted when events are received. We model this interruption with inhibitor arcs preventing firings of local processing transitions (BeginTask, EndTask and possibly others expressing more local activities)) as soon as an event is received in place ReceivEvents. The SThreads place is coloured with the STh basic class, while ReceivEvents has the same domain as the SoE place (neutral or set of event colours when dealing with several types of events). Reception of an event causes sending an acknowledgement in the uncoloured place via firing of the transition TTrigger (or TTrigger1 ), SAck and execution of an event handler. In this model, processing an event is abstracted into one transition TEHandler (or TEHandler1 ). We could replace this transition with a subnet detailing the handler if we are interested in impact of processing details on performances of the system.

Note that triggering the handler should usually be achived in a "short" period of time, with respect to components activities. This should be reflected in firing rates ratios (for instance 1/0.001) of TTrigger, TTrigger1 transitions, over BeginTask, EndTask and TEHandler, TEHandler1 transitions.

Formally, we define publisher and subscriber interfaces and event channel, as follows.

Publisher interface: A publisher interface I of a C-SWN N consists of a tuple < P I , T I > such that: Event channel: An event channel model is a tuple < P I , T I > such that: 

• P I = {P T hreads, SentEvents, ReleasT h, Ack channel}, with D(P T hreads) = D(ReleasT h) = P T h, D(Ack channel) = D(SentEvents) =ǫ; • M 0 (Ack channel) = 1; • T I = {TNE}
• P I = {SoE, Rec Events, SE channel, GenerEvents}, with D(SoE) = D(GenerEvents) = E, D(Rec Events) = D(SE channel)=D(CAck)= D(Ack subscrib)=ǫ ; • M 0 (Ack subscrib) = 1; • T I = {T RE, T SE} with D(T RE) = D(T SE) = E; • Pre(SoE,TRE)= Post(GenerEvents,TSE)= Pre(GenerEvents,TRE)= Post(SoE,TSE)= Id; SAck1 ReceivEvents1 EToProcess1 STh Ack_subscrib1 SE_channel1 GenerEvents E CAck1 Rec_Events1 Ack_channel1 ReleasTh1 PTh SentEvents1 PThreads1 PTh M0PTh SoE E M0E SThreads1 STh M0STh SentEvents2 PThreads2 PTh2 M0PTh2 Ack_channel2 ReleasTh2 PTh2 Rec_Events2 CAck2 SThreads2 STh2 M0STh2 ReceivEvents2 SAck2 EToProcess2 STh2 P30 SE_channel2

Dealing with multiple publishers and subscribers

A publisher interface of a component can push events to several subscribers. In the same way, a subscriber interface can receive events from various publishers generating the same type of event. This is the role of the event channel to mediate communication between publishers and subscribers. So, in these cases, the C-SWN of the event channel must be modified (see mapping rule 5) in order to be composable at the same time with several publishers and subscribers models (fusion of places or transitions). This modification gives rise to a CC-SWN modeling the event channel. Note that CC-SWNs corresponding to publishers and subscribers components remain the same obtained C-SWNs without any modification. We only provide an informal description with a figure to illustrate CC-SWN model of multiple publishers/subscribers event channels. Moreover, in the figure, we model for clarity only one transition (Task1 ) for the local processing of the subscriber.

Mapping rule 5: Event interfaces (2)

The C-SWN of an event channel with multiple publishers is modified (figure 9) by duplicating the TRE transition with its corresponding arcs and places (Rec Events, CAck ), as many times as there are publishers. If there are multiple subscribers, places SE channel, Ack subscribe are duplicated (with corresponding arcs), as many times as there are subscribers.

modeling primitive components

In this section, we derive an SWN model (its C-SWN ), for each primitive component. Clearly, it is possible to abstract at this stage, the model of a primitive component by choosing an appropriate level of details:

• At the highest abstraction level, the content of a primitive component can be modeled by a very simple SWN. This is done when the interest of the modeller doesn't focus on the details of the component, but rather aims at estimating performances at an architectural level of its application.

• At a finer level of details, we model all internal activities of the component.

The C-SWN of a primitive component is then built as follows. After this modeling step, the obtained CC-SWN is completed with stochastic parameters. This is done by associating rates to transitions of the obtained model. These rates may be estimated through a model parameters estimation phase, where a test application (see for instance the Grinder tool) is ran in order to measure the parameters needed for performance prediction.

We illustrate the construction of a CC-SWN through modeling of the first StockBroker component. We model first the event sink interface by applying We then build the model of the client interface using mapping rule 1. We obtain the C-SWN of the figure 10(a). Then, we complete the client interface using mapping rule 2. The final CC-SWN is given by the figure 10(b).

modeling composites

After modeling primitive components of a CBS architecture, we model composites of higher levels. A composite component of a level i is made up of a set of interconnected sub-components of level i -1, being themselves primitive or composite. Building the SWN model of a composite requires connecting subcomponents CC-SWNs and modeling its external interfaces. This procedure is repeated for each level until reaching the application level. For this purpose, we apply the following algorithm:

COMPOSITE CC-SWN BUILDING ALGORITHM BEGIN Let N be the number of levels of the composite. 1. Model primitive components of level 0. 2. For (i=1; i<N; i++) do a. For each composite C of level i do (i) Assemble components of level i-1 :

For each couple of subcomponents connected by a service invocation, fuse corresponding transitions (TBRS,TBPS) and (TERS,TEPS).

For each couple of components connected by an event interaction, fuse places of the publisher and event channel (SentEvents, Rec_Events) and (Ack_channel,CAck), and places of event channel and the subscriber (SE_channel,ReceivEvents) and (Ack_subscriber,SAck). (ii) Each not connected interface of a subcomponent is considered as an external interface of C. EndFor b. Model primitive components of level i. EndFor END Fusion of two transitions (resp. places) consists of defining a unique transition (resp. place), and keeping associated arcs of fused transitions (resp. places). Colour classes of the two transitions are mapped in one to one correspondence for common parameters of the interface and specific colour classes of each transition (resp. place) are kept. Hence, the colour domain of the fused transition is the Cartesian product of colour classes of the fused transition (without repetition). Whereas, colour classes of two fused places are mapped in one to one correspondence leading to the colour domain of the fused place.

When assembling SWN models of sub-components, name conflicts (of places, transitions or colour classes) may arise. They are eliminated by renaming. This renaming, as colour classes instantiation, requires at the end of analysis, to restate analysis results (obtained properties and computed performance indices) in the initial context of the CBS. Note that, together with the CC-SWN of the composite, we keep track of the CC-SWNs of its sub-components since they will be used during the analysis phase.

Modeling container services

A container is made up of a set of interconnected CCM components and a set of services offered to its components. It mediates invocations of components from or to external components belonging to other containers, through: (i) either a callback (external) interface which acts as an interceptor for all incoming calls to the component, (ii) or an interceptor for outgoing calls, internal to the container.

So, building the SWN of a container requires connecting its components CC-SWNs, modeling the services and modeling the mediation role.

Connecting the components CC-SWNs

Interconnection of the CC-SWNs is translated into fusion of transition/places corresponding to interfaces of communicating components, as explained in section 3.5.

Modeling container services

Achieving this modeling requires to associate a CC-SWN model to each container service and a second SWN modeling routing of a component request to the service needed. We assume a monothreaded container. Mapping rule 6 describes this concern illustrated in figure 11. Mapping rule 6: Container services • A container service is modeled with an abstracted component having one service interface, identified by a set of server threads colours and offering a set MP of methods (figure 11(b)). One transition Exec service abstracts the service. We choose to abstract the activity induced by a container service, as our goal is to consider the impact of a service on the execution of the analyzed CBS. In another side, the container can manage its component instances, threads or resources using the pooling technique for reducing some overhead. If the designer is interested in knowing the impact of this pooling on performances of his application, we can consider this by associating a consequent rate to the transition TBRSIntern related to the invoked operation. Note that, for more clarity, the SWNs given in figure 11 are not coloured, but should be.

Modeling the mediation role

Outgoing component calls are mediated by the container. This is modeled, as in the case of a container service invocation, using mapping rule 6. External invocations to components services located inside a container are also intercepted by this container on an external interface, and routed to the concerned component. This is modeled with mapping rule 7. Mapping rule 7: Callback interfaces Routing an external invocation to a component service of a container is modeled with the model of figure 11(c). The InterceptExt transition models the interception of a request. It is controlled by the ContainerThread place. The TBRSCallExt transition represents the submission of a request to the concerned component. The result is obtained with the TERSCallExt transition and sent to the requester using EndCallExt transition.

CC-SWN of a container

Modeling a container leads to a CC-SWN interfaces of which are defined as callback interfaces and non-connected interfaces associated with internal invocation of external services.

CONTAINER CC-SWN BUILDING ALGORITHM BEGIN 1. Model each container service using mapping rule 6. 2. Connect communicating CCM components. 3. For each invocation of a container service, build a mediation part using mapping rule 6, connect it to the requested component on one side, and to the service model on the other side. 4. Model each callback interface using mapping rule 7, and connect it to the requested component service. 5. For each internal invocation of a service offered by an external component, build a mediation part following mapping rule 6, and connect it to the requester component. END

We illustrate the modeling with the SWN given in the middle of figure 12. In this figure, two components cp1 and cp2 request respectively service1 and service2 of the container. An external client also requests a service from a component internal through the container.

Building the G-SWN of a CBS

Modeling a CBS application requires interconnection of the CC-SWNs models of all its elements (components, event channels, containers, ...) obtained in previous steps. This is done via connection of communicating interfaces. The obtained model is then completed by "closing" interfaces of the application with a small Petri net to ensure a finite state space of the G-SWN . This is a classical method, allowing us to limit the number of entities in the model. In the Petri net context, we add a small Petri net to each interface of the application with an adapted initial marking, generally an upper bound of the number of entities. An example of such a closing SWN is given in figure 13.

For our application example presented in figure 3, we first build CC-SWN models of the StockDistributor components 1 and 2 (figures 14 and 15), the StockBroker components 1 and 2 (figures 10(b) and 16) and the Executor component (figure 17(a)). We also build the CC-SWN of the event channel following mapping rule 4. The event channel manages a set E of events for two publishers and two subscribers. So, we apply mapping rule 5 to build the CC-SWN of the channel (figure 18).

On the other hand, the executor component receives requests from the first subscriber on its server interface. Two basic colour classes Serv and MP, modeling respectively server threads and (method, parameters) pairs, are involved in processing requests.

Storing data is achieved by requesting the container persistence service through a client interface (transitions BRS and ERS) of the executor component. We obtain so the C-SWN which is completed also using mapping rule 2 (figure 17(a)). The persistence service is modeled as an abstracted component given by figure 17(b)). The colour classes BD and M P BD are respectively representing threads of the service and its methods with associated parameters.

Then, we modeled the container which routes request of the Executor component to the persistence service. Finally, we connect all obtained CC-SWNs (of components, event channel, container and persistence service) and close the global model with a "closing" Petri net. We obtain thus the G-SWN of figure 19.

Note that some places and transitions have been renamed because of name conflicts between the two StockDistributors, between the two StockBrokers and between the Executor and the persistence service. After generating the G-SWN of a CBS and the (CC-SWN k ) k∈K corresponding to its components, we apply the two last steps of our analysis approach, aiming mainly at computing performance indices of a system such as the response time to a request, the throughput, the mean number of a certain resource, etc. We may also check qualitative properties like deadlocks, reachability of a particular state. Analysis of a CBS can be performed through the direct analysis of the G-SWN obtained in the first step of our method. This approach has been followed in [START_REF] Bernardi | Implementing compositionality for stochastic Petri nets[END_REF] for analysis of a composition of SWNs, and implemented in the Algebra tool of the GreatSPN package [21]. In our approach, we rather benefit from the compositional structure of CBSs in order to provide an efficient steady-state performance analysis with regard to computation time and memory requirements.

For this purpose, we devise an extension of our previous work [START_REF] Delamare | Efficient implementation for performance evaluation of synchronous decomposition of high level stochastic Petri nets[END_REF][START_REF] Delamare | Performance evaluation with asynchronously decomposable SWN: implementation and case study[END_REF] adapted to CBS. Let us remind that this approach defines a structured analysis method for a decomposition of SWNs, allowing to avoid explicit construction of the aggregated Markov chain corresponding to the global SWN. The main idea is to decompose a (global) SWN into several subnets, and study each subnet augmented with "parts" abstracting interactions with other subnets. These separated studies are then used to derive a tensorial representation of the generator of the underlying aggregated Markov chain of the global net. The tensorial representation is finally used to compute performance indices which leads to memory and computation time savings.

For this purpose, two kinds of decompositions were defined: (i) a "synchronous" decomposition (figure 20, left) modelling a complex "Rendez-vous" like synchronization between two SWNs; (ii) an "asynchronous" decomposition (figure 20, right) which corresponds to an asynchronous method call or a message sending and receiving between two or more SWNs. Each kind of decomposition requires a set of conditions which can be checked at the SWN definition level. We refer the reader to [START_REF] Haddad | Aggregation and decomposition for performance evaluation of synchronous product of high level Petri nets[END_REF][START_REF] Haddad | Asynchronous composition of high level Petri nets : a quantitative approach[END_REF] for a detailed presentation of these conditions.

Structured analysis method for CBS

The extension of our structured analysis to CBSs rises three problems:

1. Composition of CC-SWNs of components, as we start from the definition of components in the case of a CBS. This is in contrast to the previous method where a global SWN is decomposed into several subnets. Composition of SWNs models of a CBS has been explained above.

2. Bringing an interconnection of components into a synchronous or asynchronous composition of SWNs. We map a request/response interaction into a synchronous composition of CC-SWNs, while we model an event interaction with an asynchronous composition of CC-SWNs. We emphasize here that our modelling of interfaces ensures satisfaction of structural conditions stated for synchronous and asynchronous compositions of subnets given in [START_REF] Haddad | Aggregation and decomposition for performance evaluation of synchronous product of high level Petri nets[END_REF][START_REF] Haddad | Asynchronous composition of high level Petri nets : a quantitative approach[END_REF].

3. Impact of synchronous and asynchronous compositions in the same global model, as the structured method was defined for either a synchronous composition or else asynchronous composition of SWNs. This problem leads us to restrict the application of the structured analysis to the following cases: (i) If (N 1 , N 2 ) and (N 1 , N 3 ) (resp. (N 2 , N 3 )) are in pairwise client/server relationship, then (N 2 , N 3 ) (resp. (N 1 , N 3 )) are not in client/server relationship. (ii) If (N 1 , N 2 ) are in publish/subscribe relationship, then if they are in client/server relationship too, then event colours are not involved in the client/server interaction. (iii) If (N 1 , N 2 ) and (N 1 , N 3 ) are in publish/subscribe relationship, then if (N 2 , N 3 ) are in client/server relationship, then event colours are not involved in the (N 2 , N 3 ) interaction.

We give below our analysis algorithm based on the structured method. We start with the G-SWN of the application and the CC-SWNs corresponding to the CBS elements (components, channels, containers, ...). Let us denote by E the set {CC-

SW N k | 1 ≤ k ≤ K}. 1.
Find the set of SWN subnets (N k ) 1≤k≤K ′ representing a possible decomposition of the G-SWN, that fulfill conditions stated in [START_REF] Haddad | Aggregation and decomposition for performance evaluation of synchronous product of high level Petri nets[END_REF][START_REF] Haddad | Asynchronous composition of high level Petri nets : a quantitative approach[END_REF] for a structured representation of the SRG and its aggregated generator. These SWNs do not necessarily correspond to the CC-SWNs of the set E due to restricted conditions above. This point is investigated by checking first service invocation interactions, and then event interactions. 2. Extension of the SWNs N k to autonomous SWNs Nk . These autonomous SWNs are called extended nets (see [START_REF] Haddad | Aggregation and decomposition for performance evaluation of synchronous product of high level Petri nets[END_REF][START_REF] Haddad | Asynchronous composition of high level Petri nets : a quantitative approach[END_REF] for details). 3. Generation of the SRGs of these extended SWNs. 4. Computation of the synchronized product of these SRGs and of the tensorial representation of the generator of the underlying aggregated Markov chain. 5. Computation of the steady state distribution of the aggregated model and computation of the required performance indices. 6. Expression of the results in the initial context of the components.

Automation of points 1 and 6 are currently under development, whereas the the others steps have been automated in a tool compSWN, the new version of the TenSWN tool [START_REF] Delamare | Efficient implementation for performance evaluation of synchronous decomposition of high level stochastic Petri nets[END_REF].

Illustration

We note that the set of (CC-SWN k ) obtained when modelling components satisfy conditions for a structured analysis. We then use our tool compSWN on this set of subnets to compute steady-state probabilities.

Cf -E--R--Serv--MP--BD--MPBD- 

Savings with the structured method

We first show time and memory savings due to the use of the structured analysis.

To this end, we use the GreatSPN environment on the G-SWN to compare results of both analysis methods. We vary the cardinalities of our basic colour classes, and we study the behaviour of the solvers for several configurations. The solvers run on a Suse linux 9.2 workstation with 512 MO.

We report in table 1 behaviours of the two solvers (GreatSPN and compSWN) for what concerns memory usage (in bytes) and computation times for the SRG generation phase only of the resolution, i.e. without computing steady-state probabilities nor performance indices. We also indicate the state space sizes of the global net. Notations for table 1 are the following: -Colour-is the cardinality of the static colour subclass denoted by Colour, NbS is the number of symbolic markings, NbO is the number of ordinary markings, TG is the computation time of GreatSPN, TC is the computation time of compSWN, MG is the memory (in Megabytes) used by GreatSPN and MC is the memory used by compSWN. Note that we assume a cardinality of value 1 for basic colour classes PT1, PT2, ST1 and ST2 of respectively publishers and subscribers, as we considered monothreaded components. 

Response time variations

We are interested in studying the variation of three performance indices:

• Response time to process an event in the first subscriber, with respect to the event receiving rate, since it invokes a service from another component, which itself invokes a container service.

• Response time for local processing of the subscriber, with respect to the event receiving rate.

• Response time of a subscriber request processed by the executor component, regarding the event sending rate. The goal of studying these variations is to evaluate the impact of the container service (for the first indice), and the impact of sending and receiving events on the subscriber activity (local and event processing). For that purpose, we choose configuration 4 (table 1), since the number of symbolic markings is significantly higher than for configurations 1 to 3.

Note that even though we use small cardinalities for colour classes, a colour may model a group of elementary entities, for instance a request colour can stand for 10, 100 or 1000 requests; obviously, firing rates of transitions involving this colour should be adapted to the semantics of a coloured token (100 requests provide a possibly 100 times (or more) slower processing rate for instance).

We take fixed rate values for a critical set of transitions (see table 2) and we vary transition rates (transitions not appearing in this table have rate equal to 1, i.e. faster than all other transitions, rates being given in the same unit):

• For the first variation, we fix the rate of the BPersistServ transition of the persistence service model to a value (0.2 then 1); we vary the rate of the receiveEvent1 transition of the first subscriber, then we compute the response time for processing an event. We obtain the diagram of figure 21.

• For the second and third variations, we take several values for the SendEvent1 The first diagram shows an increasing response time as the receiving rate increases for the two curves. However, we can see an improved (reduced) response time in the second curve, corresponding to a higher processing rate of the persistence service. This phenomenon proves that container services have an important impact on the performance of the whole system. In the second diagram, the response time is slowly increased in the first period of time, and gets rapidly augmented as the event receiving rate increases. This is expected, since event processing slows down local processing. Last computations show a very neglecting impact of the event sending on the processing of a subscriber request, as the obtained response time remains approximately the same (61.1 for event sending rates ranging from 0.1 to 5). That is an expected result since events do not interrupt the executor component.

Conclusion

Throughout this paper, we have proposed an approach allowing to study, in an efficient way, performances of Component Based Systems. The approach starts from the description of a CB designed application, given in an Architecture Description Language. We translate each component into an SWN model describing its functional behaviour and, partially, its non functional behaviour, using systematic mapping rules. Then, we connect the SWNs of the components following the architecture of the system, starting from primitive components to highest level composite components.

The main advantage of our proposed modelling for CBS is its suitability for applying our adapted structured analysis of SWNs composition, since modelling ensures required conditions for pairewise interactions of components. Our structured analysis, based on a tensorial representation of the symbolic reachability (SRG) of the G-SWN of the studied CBS, allows us to avoid the explicit construction of the aggregated Markov chain corresponding to the G-SWN. Hence, it enables important memory and computation time savings.

We instantiated this method to Fractal and CCM CBS in our papers [START_REF] Salmi | Performance evaluation of fractal component based systems[END_REF][START_REF] Salmi | From architectural design to swn models for compositional performance analysis of component based systems: application to ccm based systems[END_REF]. We are currently developing automation of the various steps of the method: extraction of information from the ADL descriptions of the CBS and combination of models of sub-components to enable structured analysis.
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 67 Figure 6: Interfaces of the CC-SWNs models with multiple client interfaces connected to the same server interface
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 8 Figure 8: Example of the SWN model of a subscriber

  with D(TNE)=PTh; • Pre(PThreads,TNE)=Post(ReleasTh,TNE) = Id ; • Post(SentEvents,TNE)=Pre(Ack channel,TNE) =1. where ǫ denotes the neutral colour. Subscriber interface: A subscriber interface I of a C-SWN N is a tuple < P I , T I > such that: • P I = {ST hreads, ReceivEvents, ET oP rocess, SAck}, with D(ST hreads) = D(ET oP rocess) = ST h, D(SAck) = D(ReceivEvents) =ǫ; • T I = {T T rigger, T EHandler} with D(T T rigger)= D(T EHandler) = ST h; • Pre(SThreads,TTrigger)=Post(EToProcess,TTrigger)=Id; • Pre(ReceivEvents,TTrigger)= Post(SAck,TTrigger) =1.
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 9 Figure 9: SWNs models of event interfaces with multiple publishers and subscribers
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 10 Figure 10: C-SWN and CC-SWN of the StockBroker 1 component
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 121314 Figure 12: Example of a container CC-SWN
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 15 Figure 15: CC-SWN model of the StockDistributor 2
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 1718 Figure 17: CC-SWN models of the Executor and the persistence service
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 19 Figure 19: G-SWN model of the stock quoter example
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 20 Figure 20: Synchronous (left) and asynchronous (right) decomposition of SWNs

Figure 21 :

 21 Figure 21: Event processing response time versus event receiving rate for two container service rates
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 22 Figure 22: Subscriber local activity response time versus event sending rate

  (right)). t BP S is controlled by two places ServTH and SoMP modeling respectively server threads and methods with their parameters. Possibly, a third place ResServ coloured with a basic class R is used modeling specific resources needed during execution of a service. Whereas, t EP S is controlled by a place Result coloured with tuples belonging to ST h × M P × R modeling the result of request processing.• A client interface, identified by a set of colours CTh modeling possible request threads of the client component is modeled with two transitions t BRS and t ERS representing the beginning of service request and its ending (figure5(left)). t BRS (resp.t ERS ) is controlled by a place PBegReq (resp. PEndReq) coloured with CTh and modeling respectively requesting and released client threads.

Table 1 :

 1 State space size and time computation for various configurations of the application

	1	1	4	3	5		4	3
	2	4	4	3	5		4	3
	3	8	4	3	5		4	3
	4	12	4	3	5		4	3
	Cf	NbS		NbO	TG TC	MG MC
	1	51840	7538688	147	25	13.46 0.19
	2 129600	60309504	537 116	37.13 0.45
	3 233280	964952064 1130 382	68.65 0.78
	4 336960 15439233024 1650 855 100.17 1.13
		Transition	Rate Transition Rate
		GenEvents1	0.75 BPS		0.9
		GenEvents2	0.65 localSub1	8
		SendEvents1	0.8 localSub2	8
		SendEvents2	0.7 process		0.9

Table 2 :

 2 Transition rates of the studied configuration