Estimating SARS-CoV-2 infection probabilities with serological data and a Bayesian mixture model - Université de Paris - Faculté de Santé Access content directly
Journal Articles Scientific Reports Year : 2024

Estimating SARS-CoV-2 infection probabilities with serological data and a Bayesian mixture model

Benjamin Glemain (1) , Xavier de Lamballerie (2) , Marie Zins (3, 4) , Gianluca Severi (5, 6) , Mathilde Touvier (7) , Jean-François Deleuze (8) , Pierre-Yves Ancel (9, 10) , Marie-Aline Charles (11) , Sofiane Kab (12) , Adeline Renuy , Stephane Le-Got , Celine Ribet (12) , Mireille Pellicer (12) , Emmanuel Wiernik (12) , Marcel Goldberg (12) , Fanny Artaud (3) , Pascale Gerbouin-Rérolle (13) , Mélody Enguix , Camille Laplanche , Roselyn Gomes-Rima (5) , Lyan Hoang , Emmanuelle Correia (5) , Alpha Amadou Barry , Nadège Senina , Julien Allegre (7) , Fabien Szabo de Edelenyi (7) , Nathalie Druesne-Pecollo , Younes Esseddik , Serge Hercberg (7) , Mélanie Deschasaux (7) , Marie-Aline Charles , Valérie Benhammou , Anass Ritmi , Laetitia Marchand , Cecile Zaros , Elodie Lordmi , Adriana Candea , Sophie de Visme , Thierry Simeon , Xavier Thierry , Bertrand Geay , Marie-Noelle Dufourg , Karen Milcent , Delphine Rahib , Nathalie Lydie , Clovis Lusivika-Nzinga , Gregory Pannetier , Isabelle Goderel , Céline Dorival , Jérôme Nicol , Olivier Robineau , Cindy Lai , Liza Belhadji , Hélène Esperou , Sandrine Couffin-Cadiergues , Jean-Marie Gagliolo , Hélène Blanché , Jean-Marc Sébaoun , Jean-Christophe Beaudoin , Laetitia Gressin , Valérie Morel , Ouissam Ouili , Laetitia Ninove , Stéphane Priet , Paola Mariela Saba Villarroel , Toscane Fourié , Souand Mohamed Ali , Abdenour Amroun , Morgan Seston , Nazli Ayhan , Boris Pastorino , Nathanaël Lapidus (1) , Fabrice Carrat (1)
Adeline Renuy
  • Function : Author
Stephane Le-Got
  • Function : Author
Mélody Enguix
  • Function : Author
Camille Laplanche
  • Function : Author
Lyan Hoang
  • Function : Author
Alpha Amadou Barry
  • Function : Author
Nadège Senina
  • Function : Author
Nathalie Druesne-Pecollo
  • Function : Author
Younes Esseddik
  • Function : Author
Marie-Aline Charles
  • Function : Author
Valérie Benhammou
  • Function : Author
Anass Ritmi
  • Function : Author
Laetitia Marchand
  • Function : Author
Cecile Zaros
  • Function : Author
Elodie Lordmi
  • Function : Author
Adriana Candea
  • Function : Author
Sophie de Visme
  • Function : Author
Thierry Simeon
  • Function : Author
Xavier Thierry
  • Function : Author
Bertrand Geay
  • Function : Author
Marie-Noelle Dufourg
  • Function : Author
Karen Milcent
  • Function : Author
Delphine Rahib
  • Function : Author
Nathalie Lydie
  • Function : Author
Clovis Lusivika-Nzinga
  • Function : Author
Gregory Pannetier
  • Function : Author
Isabelle Goderel
  • Function : Author
Céline Dorival
  • Function : Author
Jérôme Nicol
  • Function : Author
Olivier Robineau
  • Function : Author
Cindy Lai
  • Function : Author
Liza Belhadji
  • Function : Author
Hélène Esperou
  • Function : Author
Sandrine Couffin-Cadiergues
  • Function : Author
Jean-Marie Gagliolo
  • Function : Author
Hélène Blanché
  • Function : Author
Jean-Marc Sébaoun
  • Function : Author
Jean-Christophe Beaudoin
  • Function : Author
Laetitia Gressin
  • Function : Author
Valérie Morel
  • Function : Author
Ouissam Ouili
  • Function : Author
Laetitia Ninove
  • Function : Author
Stéphane Priet
  • Function : Author
Paola Mariela Saba Villarroel
  • Function : Author
Toscane Fourié
  • Function : Author
Souand Mohamed Ali
  • Function : Author
Abdenour Amroun
  • Function : Author
Morgan Seston
  • Function : Author
Nazli Ayhan
  • Function : Author
Boris Pastorino
  • Function : Author

Abstract

The individual results of SARS-CoV-2 serological tests measured after the first pandemic wave of 2020 cannot be directly interpreted as a probability of having been infected. Plus, these results are usually returned as a binary or ternary variable, relying on predefined cut-offs. We propose a Bayesian mixture model to estimate individual infection probabilities, based on 81,797 continuous anti-spike IgG tests from Euroimmun collected in France after the first wave. This approach used serological results as a continuous variable, and was therefore not based on diagnostic cut-offs. Cumulative incidence, which is necessary to compute infection probabilities, was estimated according to age and administrative region. In France, we found that a “negative” or a “positive” test, as classified by the manufacturer, could correspond to a probability of infection as high as 61.8% or as low as 67.7%, respectively. “Indeterminate” tests encompassed probabilities of infection ranging from 10.8 to 96.6%. Our model estimated tailored individual probabilities of SARS-CoV-2 infection based on age, region, and serological result. It can be applied in other contexts, if estimates of cumulative incidence are available.
Fichier principal
Vignette du fichier
estimating_glemain_2024.pdf (1.34 Mo) Télécharger le fichier
Origin Publication funded by an institution
licence

Dates and versions

hal-04561282 , version 1 (26-04-2024)

Licence

Identifiers

Cite

Benjamin Glemain, Xavier de Lamballerie, Marie Zins, Gianluca Severi, Mathilde Touvier, et al.. Estimating SARS-CoV-2 infection probabilities with serological data and a Bayesian mixture model. Scientific Reports, 2024, 14 (1), pp.9503. ⟨10.1038/s41598-024-60060-3⟩. ⟨hal-04561282⟩
13 View
4 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More