A Novel Robust Hexarotor Capable of Static Hovering in Presence of Propeller Failure
Elgiz Baskaya, Mahmoud Hamandi, Murat Bronz, Antonio Franchi

To cite this version:
Elgiz Baskaya, Mahmoud Hamandi, Murat Bronz, Antonio Franchi. A Novel Robust Hexarotor Capable of Static Hovering in Presence of Propeller Failure. 2020. hal-02970614

HAL Id: hal-02970614
http://hal.univ-smb.fr/hal-02970614
Preprint submitted on 18 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Novel Robust Hexarotor Capable of Static Hovering in Presence of Propeller Failure

Elgiz Baskaya1, Mahmoud Hamandi2, Murat Bronz1, Antonio Franchi3,2

Abstract—This paper presents a novel open source design of the Y-shaped hexarotor Unmanned Aerial Vehicle (UAV), and proves both in theory and real experiments its robustness to the failure of any of its propellers. An intuitive geometrical interpretation of UAV static hovering ability is presented, through which the robustness of different coplanar/collinear hexarotor designs is analyzed. Following the presented geometrical interpretation, we also show a method to render the Star-shaped hexarotor robust to the failure of some of its propellers, while showing its incapability to static hover in the case of the failure of any of its propellers. Finally, the efficiency of the Y-shaped and Star-shaped hexarotors are tested experimentally, and conclusions on the advantages and disadvantages of the two designs are drawn.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) are now widely used in research and industry thanks to their versatility and large field of applications, including aerial physical interaction [1]–[4]. The most commonly used UAVs are multi-rotor collinear and coplanar platforms, such as quadrotors, hexarotors and octorotors [5]; this is mostly due to their flight efficiency as compared to more complex UAVs, in addition to easiness and low cost of their production.

It is of paramount importance, for safety and reliability, that the multi-rotor is designed to withstand at least a single propeller failure, and precisely land after the fault. It has been shown that it is possible to still fly multi-rotors with less than six propellers (e.g., quadrotors) after the loss of one or more propellers [6]. In such cases, however, the platform is not anymore able to statically hover, i.e., to keep a zero translational and angular velocity. In fact, the platforms start to loiter and spin at an uncontrolled speed, while only their translational and angular velocity. In [7], it is explained that in order to achieve static hovering robustness, this property is a required one for any platform flying in a critical environment. It has been shown that, in order to achieve static hovering robustness, six propellers are minimally required [7]. Furthermore, surprisingly, it has been shown that the standard and widespread Star-shaped hexarotors (see Fig. 1-right) are not robust in such sense. This counterintuitive phenomenon can be seen for example in [8], [9] where simulations and experiments show that the best a model predictive controller is able to achieve in such case is dynamic hovering, even if five propellers are still available.1 Similar outcomes are obtained from other commercially available platforms2.

The mathematical reasons for such vulnerability have been deeply analyzed in [7], where it is explained that in order to achieve robust hexarotor platforms one possibility is to use a Star-shaped platform with tilted propellers [10], [11]. Exploiting this fact, two new prototypes have been built. One prototype in [12] is a Star-shaped hexarotor platform where one of the propellers can be quickly tilted via a servomotor in case of the loss of any of its propellers in order to recover static hoverability. Another prototype, built and experimentally demonstrated in [7], is a Star-shaped platform with constantly tilted propellers. The robustness of both prototypes have been shown in real experiments.

Another way to obtain robustness, also illustrated theoretically in [7] is to use a non-Star-shaped hexarotor, like, e.g., the Y-shaped hexarotor [7] depicted in Fig. 1-left. Such solution is mechanically simpler than the above mentioned designs, where it does not need neither the tilting of the propellers nor the addition of servomotors or other mechanisms. At the best of our knowledge, the robustness of the Y-shaped hexarotor design against propeller failure has never been experimentally tested in the static hovering sense.

The goal of the work presented in this paper is to fill such experimental gap and at the same time to provide an extensive corollary of contributions in this field. In particular the main contributions are summarized as follows:

1) provide a novel open source design and building of the Y-shaped hexarotor theoretical concept which has been only abstractly introduced in [7];

1https://youtu.be/cocvUrPfyfo
2https://youtu.be/HQ7wa5cBT_w?t=45
2) demonstrate for the first time in the literature via real experiments that the Y-shaped hexarotor is a robust platform in the static hovering sense, and therefore it could be used in safety critical environments (e.g., close to buildings and humans);

3) provide an intuitive way to understand why the collinear Y-shaped hexarotor design is robust while the collinear Star-shaped hexarotor design is not based on geometrical intuition; to provide also an intuition about the influence of parametric uncertainties on the robustness of the presented platforms;

4) carry out a systematic and extensive set of real experiments that compare the Y-shaped and Star-shaped hexarotor designs (also built in house) in the fairest way possible, both from the point of view of robustness and energy efficiency.

The rest of this paper is organized as follows: sec. II models a generic hexarotor and defines formally the Star-shaped and Y-shaped hexarotor designs. Sec. III defines the feasible moment set of the hexarotor platform, and studies the platform’s hovering and propeller robustness. Sec. IV describes the built hardware, and sec. V describes the ensuing experimental campaign. Finally, sec. VI concludes the paper.

II. Modeling

We consider Multi-Rotor Aerial Vehicles (MRAV) with six fixed propellers having collinear orientations. The world frame is denoted with \(F_W \), its origin with \(O_W \) and its axes with \(\{x_W, y_W, z_W\} \) (see Fig. 1). The moving frame is denoted with \(F_R \), its origin \(O_R \) coincides with the Center of Mass (CoM) of the platform, and its axes are denoted with \(\{x_R, y_R, z_R\} \). We denote with \(\mathbf{p}_R \in \mathbb{R}^3 \) and \(\mathbf{R}_R \in SO(3) \) the position of \(O_R \) in \(F_W \) and the rotation matrix describing the orientation of \(F_R \) with respect to (w.r.t) \(F_W \), respectively; we further denote by \(\mathbf{v}_R = \mathbf{p}_R' \in \mathbb{R}^3 \) the linear velocity of \(O_R \) in \(F_W \), and by \(\omega_R \) the angular velocity of \(F_R \) w.r.t. \(F_W \), expressed in \(F_R \). It is noted that \(\mathbf{R}_R = \mathbf{R}_R(\omega_R)_x \), where \((\cdot)_x \) denotes the map from a vector in \(\mathbb{R}^3 \) to its corresponding skew-symmetric matrix in \(SO(3) \).

The platform is actuated with a set of \(n \) fixed propellers. The frame \(F_{p_i} \) is attached to the stator of the motor spinning the propeller and its origin \(O_{p_i} \) coincides with the center of the propeller. The axes of \(F_{p_i} \) are denoted with \(\{x_{p_i}, y_{p_i}, z_{p_i}\} \), and \(\mathbf{p}_i \in \mathbb{R}^3 \) denotes the position of \(O_{p_i} \) in \(F_R \). The \(i \)-th propeller rotates with a spinning rate \(\omega_i \in \mathbb{R} \) about the \(z_{p_i} \) axis, creating a thrust force \(\mathbf{f}_i \in \mathbb{R}^3 \) applied at \(O_{p_i} \), and a drag moment \(\tau_{i}^d \in \mathbb{R}^3 \), defined as follows:

\[
\mathbf{f}_i = c_f \|\omega_i\| \omega_i z_{p_i}, \tag{1}
\]

\[
\tau_{i}^d = c_r \|\omega_i\| \omega_i z_{p_i}, \tag{2}
\]

where \(c_f \in \mathbb{R}_{>0} \) and \(c_r \in \mathbb{R} \) are the corresponding lift and drag coefficients of the corresponding propeller. The control input of the \(i \)-th propeller is the quantity \(u_i = \|\omega_i\| \omega_i \).

The total resulting force \(\mathbf{f}_R \) applied at \(O_R \) and moment \(\mathbf{\tau}_R \) with center \(O_R \) are expressed in \(F_R \) as follows:

\[
\mathbf{f}_R = \sum_{i=1}^{n} c_f u_i z_{p_i}, \tag{3}
\]

\[
\mathbf{\tau}_R = \sum_{i=1}^{n} (\tau_i^l + \tau_i^d) = \sum_{i=1}^{n} (c_f p_i \times z_{p_i} + c_r z_{p_i}) u_i. \tag{4}
\]

We assume all propellers to be identical, with three propellers rotating in one direction and the remaining three in the opposite direction; as such, \(c_f = c_f \) and \(c_r = \kappa_c c_r \), where \(c_r \in \mathbb{R}_{>0} \) and \(\kappa_c \in [-1, 1] \) denoting respectively a CCW(CW) direction of rotation w.r.t. \(z_{p_i} \). The position of \(O_{p_i} \) in \(F_R \) is given by

\[
\mathbf{p}_i = R_{z_i} \left(\frac{\pi}{6} + (i - 1) \frac{2\pi}{n} - \frac{1}{2} (-1)^\gamma \right) \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \tag{5}
\]

with \(i = 1, \ldots, 6 \), where \(R_z \) is the canonical rotation matrix about the \(z \)-axis. The selection of two different values for the parameter \(\gamma \) allows modeling both designs considered in this work, and presented in Fig. 1, as follows:

1) Star-shape hexarotor (Fig. 1, right): is a hexarotor platform with \(\gamma = 0 \). In this configuration, the propellers are the furthest away form each other, and thus do not overlap.

2) Y-shape hexarotor (Fig. 1, left): is a hexarotor platform with \(\gamma = \frac{\pi}{3} \). In this configuration, each pair of propellers share a single rotation axis and are placed on top of each other. In order to make such design physically realizable, the pairs of coinciding propellers have to be displaced along their rotation axis. Such displacement does not affect the computation of the total force and moment because it is done along the direction of the thrust forces.

For any intermediate value of \(\gamma \in (0, \frac{\pi}{3}) \) one obtains a platform that is ‘in between’ the two mentioned above.

III. Feasible Moment Set

Using (3) and plugging (5) in (4) we can write \(\mathbf{f}_R = F_1 u \) and \(\mathbf{\tau}_R = F_2 u \), where \(u = [u_1 \cdots u_6]^T \in \mathbb{R}^n \) and the force

![Fig. 1: System model and defined frames for Y-shaped (left) and Star-shaped (right) hexarotors.](image-url)
allocation matrix F_1 and moment allocation matrix F_2 are defined as

$$
F_1 = c_f \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
$$

(6)

$$
F_2(\gamma) = c_r \begin{bmatrix}
rs(\gamma - \frac{\pi}{2}) + rs(\frac{\pi}{2} + \gamma) + rs(\frac{\pi}{2} - \gamma) \\
-rc(\gamma - \frac{\pi}{2}) - rc(\frac{\pi}{2} + \gamma) - rc(\frac{\pi}{2} - \gamma) \\
rs(\gamma - \frac{\pi}{2}) + rs(\frac{\pi}{2} + \gamma) + rs(\frac{\pi}{2} - \gamma) \\
-rc(\gamma - \frac{\pi}{2}) - rc(\frac{\pi}{2} + \gamma) - rc(\frac{\pi}{2} - \gamma)
\end{bmatrix}
$$

(7)

where $r = (c_f/c_r)\lambda$, $s(\cdot) = \sin(\cdot)$, and $c(\cdot) = \cos(\cdot)$.

Specializing (7) for the Y-shaped ($\gamma = \frac{\pi}{3}$) and Star-shaped ($\gamma = 0$) hexarotors one obtains:

$$
F_2^Y = F_2(\frac{\pi}{3}) = c_r \begin{bmatrix}
0 & +r\frac{\sqrt{3}}{2} & +r\frac{\sqrt{3}}{2} & -r\frac{\sqrt{3}}{2} & -r\frac{\sqrt{3}}{2} & 0 \\
-r & +r & -r & +r & -r & -r
\end{bmatrix}
$$

(8)

$$
F_2^S = F_2(0) = c_r \begin{bmatrix}
+r\frac{\sqrt{3}}{2} & +r & +r & +r & +r & -r
\end{bmatrix}
$$

(9)

We assume that each entry of the input u is limited between 0 and a maximum value u_{max}, i.e., $u \in U = \mathbb{R}^3_{i=1} \{0, u_{max}\}$, where U is the set of feasible inputs. Consequently we define the set \mathcal{F}_2 as the feasible moment set, i.e., the image set of U through the linear map F_2:

$$
\mathcal{F}_2(\gamma) = \{\tau \in \mathbb{R}^3 \mid \exists u \in U : \tau = F_2(\gamma)u\}.
$$

(10)

The specialized feasible moment sets for the Y-shaped and Star-shaped hexarotors are noted as $\mathcal{F}_2^Y = \mathcal{F}_2(\frac{\pi}{3})$ and $\mathcal{F}_2^S = \mathcal{F}_2(0)$, respectively.

The plots in the first column of Figure 2 show the feasible moment set of the Y-shaped and Star-shaped hexarotors.

A. Static Hovering

The platform is able of static hovering when it can reach and maintain a constant orientation and position, i.e.

$$
p_R \rightarrow 0, \quad \omega_R \rightarrow 0,
$$

(11)

As was explained in [7] the following conditions are needed for a platform to possess the static hovering ability

$$
\text{rank}\{F_2\} = 3
$$

(12)

$$
\exists u \in \text{int}(U) \text{ s.t. } \left\{ \begin{array}{l}
\|F_1u\| > 0 \\
F_2u = 0
\end{array} \right.
$$

(13)

Where $\text{int}(U)$ denotes the interior of U.

Conditions (12) and (13) can be understood geometrically from the feasible moment set \mathcal{F}_2 as follows:

Proposition 1. The second condition of (13) is equivalent to check that $0 \in \text{int}(\mathcal{F}_2)$.

Proof. It is a straightforward consequence of the continuity of the map F_2. Full proof omitted for the sake of brevity. □

Following Prop. 1, a platform is deemed unable of static hovering if the origin is a boundary of \mathcal{F}_2 or an external point of the set. It is easy to show that both the Y-shaped and Star-shaped hexarotors can achieve static hoverability as shown below.

Proof. rank$\{F_2^Y\} = 3$ and rank$\{F_2^S\} = 3$, and any input of the form $u = \lambda \mathbf{1} = \lambda [1 \cdots 1]^T \in \mathbb{R}^n$ with $\lambda \in (0, u_{max})$ belongs to int(U) and satisfies (13). □

The static hovering ability of both platforms can also be seen from the feasible moment set of each (Figure 2), where the origin is indeed an interior point of both \mathcal{F}_2^S and \mathcal{F}_2^Y.

B. Rotor Failure

In this section we highlight the effect of propeller loss on the static hovering capability of the two hexarotors in exam. We denote by $kF_2(\gamma)$ the moment allocation matrix $F_2(\gamma)$ in which the k-th column has been zeroed (or, equivalently, removed). Such matrix represents the moment allocation matrix of a platform in which the k-th propeller does not spin anymore after a fault, i.e., $u_k = 0$. We denote by $kF_2(\gamma)$ the feasible moment set associated to $kF_2(\gamma)$. The same specializations for the Y-shaped and Star-shaped platform apply, thus obtaining kF_2^Y, kF_2^S, kF_2^S.

Remark 1. The feasible moment set kF_2^S for different k is a rotation about the z-axis of $k^{-1}F_2^S$, with a flip about the (x, y)-plane.

Proof. It is easy to see that

$$
kF_2^S = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix}
$$

(14)

Since all propellers are identical, then the transformations between kF_2^S and $k^{-1}F_2^S$ are the same as between kF_2^S and $k^{-1}F_2^S$.

□

It was proved in [7] that the Y-shaped hexarotor – or any collinear coplanar hexarotor with $\gamma \in (0, \frac{\pi}{2})$ – is still capable of static hovering after the single loss of anyone of its propellers. On the other hand, [7] proved that the Star-shaped hexarotor $(\gamma = 0)$ loses its ability to perform static hovering as it loses any of its propellers.

The static hovering ability of the two platforms can be easily understood from the geometrical viewpoint presented earlier. The vulnerability of the Star-shaped hexarotor can be seen from the feasible moment set of the corresponding $1F_2^S$ shown in Figure 2, where it is clear that the null torque is a point on the boundary of the shown feasible moment set; this result is similar for any kF_2^S thanks to remark 1. Figure 2 also shows that for any kF_2^S, the origin of the feasible moment set is an interior point, where $0 \in \text{int}(\bigcap_k kF_2^S)$.
C. Effect of Disturbance Moment

For any platform where static hovering is not feasible after the loss of any of its propellers, it is possible to shift the origin of the feasible moment set into the interior of \(k \mathcal{F}_2 \), as long as (12) and the first part of (13) are still satisfied. This can be done by adding a disturbance moment \(\tau_R^{\text{dist}} \) such that the control moment \(\tau_R = -\tau_R^{\text{dist}} \in \text{int}(k \mathcal{F}_2) \).

For the Star-shaped hexarotor, for example, a disturbance moment can be obtained by shifting the CoM of the platform.

Proposition 2.

\(\bar{\beta} \lambda \in \text{int}(k \mathcal{F}_2^S) \) \(\forall k \in n \) \hspace{1cm} \tag{15} \]

i.e., it does not exist a single disturbance moment that allows to shift the origin in the interior of the feasible moment set of the Star-shaped hexarotor in the case of the loss of any of the propellers.

Proof. This result is a consequence of the fact that \(\cap_k \text{int}(\mathcal{F}_2^S) = \emptyset \). Let us consider a moment \(\tau_R^{1,4} \in \mathcal{F}_2^S \cap 4 \mathcal{F}_2^S \).

\[
\begin{align*}
\tau_R^{1,4} &= c_\tau \begin{bmatrix}
+r & +r & +r & +r \\
0 & +r & +r & +r \\
1 & 1 & 1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
\end{bmatrix} \\
&= c_\tau \begin{bmatrix}
+r & +r & +r & +r \\
0 & +r & +r & +r \\
-1 & -1 & -1 & -1 \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
\end{bmatrix}
\end{align*}
\]

By simplifying then adding the first and second rows we find \(u_1 + u_2 = 0 \) which comes from the definition of the intersection between the two sets. The only solution for the above equality is to set \(u_1 = u_4 = 0 \); as such

\[
\exists u > 0 \text{ s.t. } \tau_R^{1,4} \in \text{int}(1 \mathcal{F}_2^S \cap 4 \mathcal{F}_2^S)
\]

and as such, \(\text{int}(1 \mathcal{F}_2^S \cap 4 \mathcal{F}_2^S) = \emptyset \), and \(\text{int}(\bigcap_k k \mathcal{F}_2^S) = \emptyset \).

The reasoning behind the above proof is also visible from the figure 2, where it can be seen clearly that \(\text{int}(1 \mathcal{F}_2^S \cap 4 \mathcal{F}_2^S) = \emptyset \).

D. Effect of Model Uncertainty

While the above modeling considers the nominal geometry of the system, manufacturing uncertainty can slightly change the actuation capabilities of the platform. More specifically, in the nominal model we consider propellers to be mounted with no tilt, i.e., \(\alpha, \beta = 0 \). As detailed in [7], any modification in the mounting tilt can induce a stabilization of the platform. Moreover, while we consider lift and drag coefficients \(c_f, c_d \) to be constant, they are a linear fit of the underlying nonlinear model. In addition, different propellers might have varying aerodynamic properties. Finally, in the above formulation the arm length \(l \) between the CoM and each propeller is assumed constant, and the CoM is assumed to coincide with the Geometric Center (GC).

In a static hovering condition, the uncertainties mentioned above can be approximated by a lumped disturbance moment \(\tau_R^{\text{dist}} \); this disturbance has to be compensated so as the resultant moment applied to the platform is equal to zero. For the compactness of the paper, we omit the formal derivation of this lumped disturbance moment. This implies that the input moment \(\tau_R \) needed to have static hovering is equal to \(\tau_R = -\tau_R^{\text{dist}} \) and not zero as it would be in the nominal case.

The presence of such disturbance \(\tau_R^{\text{dist}} \) will practically make possible the static hovering of Star-shaped hexarotor during the loss of some of its propellers; in particular, for any propeller loss whose feasible moment set still contains the origin following the translation by \(\tau_R^{\text{dist}} \). More formally, the platform can hover upon the loss of any propeller \(k \) for which the following condition is verified

\[
-\tau_R^{\text{dist}} \in \text{int}(k \mathcal{F}_2^S).
\]

However, and as suggested in Prop. 2, for any \(\tau_R^{\text{dist}} \) there will always exist some propellers whose loss precludes static hovering for the Star-shaped platform.

Preprint version

Fig. 2: Visualization of the platform feasible moment sets.
Remark 2. In the case of the Y-shaped hexarotor, let us assume that there exists a threshold moment $\tau_{\text{threshold}}^R$ such that
$$\forall \tau^R_{\text{dist}} \leq \tau_{\text{threshold}}^R - \tau^R_{\text{dist}} \in \text{int}(F^Y_2).$$
(20)

It is safe to assume that within the manufacturing and operating conditions of our platforms, $\tau^R_{\text{dist}} \leq \tau_{\text{threshold}}^R$; a similar analogy can be applied to the Y-shaped hexarotor after the failure of any of its propellers.

IV. EXPERIMENTAL PLATFORM

A. Hardware: Y-shaped and Star-shaped Hexarotors

To be able to systematically compare the Star-shaped and Y-shaped hexarotors, we design two platforms with identical components and similar properties, with the corresponding specifications shown in Table I. The two platforms, shown in Fig. 3, are built via 3D printing technology with Onyx material, and similar off-the-shelf components for the propulsion system, telemetry and safety link communication. Finally, the two platforms are flown with the same autopilot and flight controller, where the controller used is based on the Incremental Non-linear Dynamic Inversion controller (INDI). The design of both platforms is available to the public via the following link (Design link).

B. Software: Paparazzi Autopilot and INDI Controller

Throughout the flight tests, we have used the Paparazzi Autopilot system [13]. It is an open-sourced project started back in 2003 and used by several research groups, academics, and hobbyist. Being one of the first open-source autopilot systems in the world, Paparazzi covers all three segments: ground, airborne, and the communication link between them. Paparazzi has also its own complete flight plan language, where the user can define any possible trajectory using existing commands, such as circle, line, hippodrome, figure-eight, survey, etc. Thanks to its middle-ware communication bridge called Ivy-Bus, external software can be directly connected with the publish and subscribe method to the ground segment, without the need to modify the code.

The autopilot implements the INDI controller based on [14]; the controller is a robust sensor-based (measurement-based) controller which revolves around the control of the angular accelerations in an incremental way. As illustrated in [14], INDI is a robust and reliable controller, capable of dealing with strong wind perturbations and modeling inaccuracies. We refer the interested reader to the corresponding paper for more details on the control law.

V. EXPERIMENTAL RESULTS

To test the robustness and efficiency of the built platforms, an experimental campaign has been carried out at the VTO flight arena\(^3\). The position and orientation of the vehicles are captured by the motion capture system installed in the arena, however, the update frequency of the motion capture system has been reduced to 5 Hz to emulate the GPS position tracking frequency encountered in an outdoor environment.

To assess the robustness of the platforms, we introduce the following two metrics
$$\frac{1}{2} m (e_p^T e_p + v_R^T v_R) \quad \text{(translation motion error)} \quad \text{(21)}$$
$$\frac{1}{2} m \omega^2_\phi \quad \text{(rotational kinetic energy)}, \quad \text{(22)}$$
where $e_p = p_d^R - p_R \in \mathbb{R}^3$ is the positional error and ω_ϕ is the yaw rate. It is easy to show from the underactuated dynamics and differential flatness of both vehicles that such metrics reflect the platform hovering, where each converges to zero if the platform is in static hovering, and diverges otherwise.

A. Static Hovering Experimental Campaign

To test the robustness of each platform, we synthetically induce a propeller failure while the platform is in static hovering.

\(^3\)https://www.enac.fr/en/drone-flight-arena-toulouse-occitanie-0

<table>
<thead>
<tr>
<th>Specification</th>
<th>Star-Shape</th>
<th>Y-Shape</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame-Motor Distance</td>
<td>0.143</td>
<td>0.130</td>
<td>[m]</td>
</tr>
<tr>
<td>Total Mass</td>
<td>0.745</td>
<td></td>
<td>[kg]</td>
</tr>
<tr>
<td>Battery Capacity</td>
<td>23.0</td>
<td>344</td>
<td>[Wh]</td>
</tr>
<tr>
<td>Flight time</td>
<td>569</td>
<td>45</td>
<td>[s]</td>
</tr>
<tr>
<td>Maximum thrust</td>
<td>60</td>
<td>45</td>
<td>[N]</td>
</tr>
<tr>
<td>Structure material</td>
<td>3D printed (Onyx composite)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure components</td>
<td>9 pieces</td>
<td>7 pieces</td>
<td></td>
</tr>
<tr>
<td>Motor & Propeller</td>
<td>T-Motor F40(Kv 2400) & 5T-5147 Prop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Speed Ctrl</td>
<td>T-Motor F45A V2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autopilot</td>
<td>Paparazzi Tawaki v1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>Xbee modem & Futaba SBus Receiver</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE I: Hexarotor Specifications
hovering, and assess the platform’s robustness in the wake of the failure.

We note that during these experiments, and unless otherwise specified, the controller was not informed about the propeller failure, and rather attempts to fly the platform solemnly based on its measurements.

1) Static Hovering of the Y-shaped Design: First, we test the Y-shaped hexarotor to verify its robustness to propeller failures as theoretically proven in Sec. III.

Fig. 4a shows (top) the position of the Y-shaped hexarotor and (bottom) the hovering metrics of the Y-shaped hexarotor while flying with all propellers working properly and in the wake of the failure of one of each of its six propellers. As expected, the platform recovers its position after the failure of any of its propellers, with the two metrics converging to zero a few seconds after the failure.

2) Static Hovering of the Star-shaped Design: A similar experiment was conducted to test the static hovering ability of the Star-shaped hexarotor.

Fig. 4b shows (top) the position of the Star-shaped hexarotor and (bottom) the hovering metrics of the Star-shaped hexarotor while flying with all propellers working properly and in the wake of the failure of one of each of its six propellers. It can be seen from Fig. 4b that while the healthy platform can hover normally, the Star-shaped hexarotor crashes after the failure of propellers 4-6. On the other hand, after the loss of propellers 1-3 the platform does not crash, however, it oscillates about the desired position, which can be observed in the large value
While the vulnerability of the Star-shaped hexarotor is expected (Sec. III), we repeated the above experiment for the Star-shaped hexarotor while informing the controller of the propeller fault. This is done by providing an updated allocation matrix to the controller, where the column corresponding to the failed propeller has been removed.

Fig. 4c shows the results of this experiment, where we can see that the Star-shaped hexarotor crashes after the failure of propellers 1 and 3-6, while it hovers normally following the failure of propeller 2.

Finally, we test the effect of adding a disturbance moment to the Star-shaped hexarotor on the platform’s static hovering ability. The disturbance moment is induced by shifting the location of one of the platform’s components in order to shift its CoM. Table II shows the static hovering ability of the Star-shaped hexarotor following the failure of one of each of its propellers while the CoM is placed in the center of the platform, or shifted along x_R or y_R. It can be seen that for each of the applied disturbance moments, and as suggested in Sec. III, the platform is vulnerable to the loss of some of its propellers, while it can successfully hover following the loss of others.

B. Path following after propeller failure

To further assess the level of robustness of the Y-shaped hexarotor after propeller failure, the platform was requested to follow a circular path after the recovery from the failure of each of its six propellers. This is essential to show that the Y-shaped hexarotor is not only able to remain still but also to follow a trajectory after a failure. Figure 5 shows the results of these experiments, where it can be seen that the tracking error after propeller failure is bounded and comparable to the corresponding error of the healthy platform.

We omit the plots of the Star-shaped hexarotor circular path tracking following propeller failure, where such a maneuver was only possible in the case of the loss of the second propeller with the controller being informed of the fault.

C. Energy consumption in healthy condition

To assess the efficiency of the two designs, we compare the power consumption of each platform at hover. To do so, each platform is flown with a fully charged battery (12.6[V]) until the battery voltage reduces to 9.8[V], after which the platform flight becomes unstable. Fig. 6 shows the voltage throughout the test flights, where the flight of each platform was repeated twice. It can be seen from this figure that the flight time of the Y-shaped hexarotor is 60% of the corresponding Star-shaped flight time. In addition, the initial voltage drop of the Y-shaped hexarotor (i.e., the voltage drop required for take off) is higher than the corresponding drop in the case of the Star-shaped hexarotor, which suggests a higher drawn current at hover.

The reduction in efficiency is expected to be caused in part to the interaction between the co-axial propellers and in part to the increased interaction between the flow of the propellers with the arms connecting the propellers to the platform, given that the arms of the Y-shaped hexarotor are made wider than those of the Star-shaped hexarotor to gain the required structural robustness.

VI. CONCLUSIONS

In this work we introduced an open source design of a Y-shaped and Star-shaped hexarotor. The two designs are built with identical components and similar properties to systematically compare the abilities of each. The two platforms...
reply on the INDI controller to fly robustly even after the failure of any(some) of their propellers respectively.

In addition, we introduce an intuitive geometrical interpretation of the platforms’ static hovering ability. Following this geometric interpretation, we show the vulnerability of the Star-shaped hexarotor to the single failure of some of its propellers and the robustness of the Y-shaped hexarotor to the single failure of any of its propellers.

The static hovering of the two designs is further studied via an extensive experimental campaign that validates the theoretical hypotheses. In addition, their respective efficiency was tested comparing the power consumption of each.

Following the above analysis, we can clearly see that while the Y-shaped hexarotor is robust to the failure of any propeller, it is less efficient than the Star-shaped design. On the other hand, the Star-shaped design is a more efficient design, while it is vulnerable to the failure of some of its propellers.

The study of a platform that can benefit from the efficient and robust of each of the two designs is an interesting research line that is left as as future work.

References

Table II: Effect of CoM shift on the robustness of the Star-shaped hexarotor

<table>
<thead>
<tr>
<th>Weight position</th>
<th>Controller</th>
<th>No crash when failed</th>
<th>Crash when failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Not Informed</td>
<td>1-2-3 (3)</td>
<td>4-5-6</td>
</tr>
<tr>
<td>Back</td>
<td>Not Informed</td>
<td>1-2-6</td>
<td>3-4-5</td>
</tr>
<tr>
<td>Right</td>
<td>Not Informed</td>
<td>4-5-6</td>
<td>1-2-3</td>
</tr>
<tr>
<td>Left</td>
<td>Not Informed</td>
<td>1-2-3</td>
<td>4-5-6</td>
</tr>
<tr>
<td>Centered</td>
<td>Not Informed</td>
<td>1-2-3</td>
<td>4-5-6</td>
</tr>
<tr>
<td>Centered</td>
<td>Informed</td>
<td>2</td>
<td>1-3-4-5-6</td>
</tr>
</tbody>
</table>

