F. Antonelli and A. Kohatsu-higa, Rate of convergence of a particle method to the solution of the McKean-Vlasov equation, The Annals of Applied Probability, vol.12, issue.2, pp.423-476, 2002.

S. Alanko, Regression-based Monte Carlo methods for solving nonlinear PDEs, 2015.

V. Bally, Approximation scheme for solutions of BSDE. Pitman research notes in mathematics series, pp.177-192, 1997.

R. Buckdahn, B. Djehiche, J. Li, and S. Peng, Mean-field backward stochastic differential equations: a limit approach, The Annals of Probability, vol.37, issue.4, pp.1524-1565, 2009.

P. Briand, B. Delyon, and J. Mémin, Donsker-type theorem for BSDEs, Electronic Communications in Probability, vol.6, pp.1-14, 2001.

P. Briand, B. Delyon, and J. Mémin, On the robustness of backward stochastic differential equations, Stochastic Processes and their Applications, vol.97, pp.229-253, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00127200

J. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, vol.44, issue.2, pp.384-404, 1973.

P. Briand and C. Labart, Simulation of BSDEs by Wiener chaos expansion, The Annals of Applied Probability, vol.24, issue.3, pp.1129-1171, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00688523

R. Buckdahn, J. Li, and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Processes and their Applications, vol.119, pp.3133-3154, 2009.

M. Bossy, Some stochastic particle methods for nonlinear parabolic PDEs, ESAIM Proc, vol.15, pp.18-57, 2005.

V. Bally and G. Pagès, A quantization algorithm for solving multidimensional discrete-time optimal stopping problems, Bernoulli, vol.9, issue.6, pp.1003-1049, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00104798

B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Processes and their applications, vol.111, pp.175-206, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00103046

C. Bender and J. Zhang, Time discretization and Markovian iteration for coupled FBSDEs. The Annals of Probability, vol.18, pp.1003-1049, 2008.

J. Chassagneux and D. Crisan, Runge-kutta schemes for backward stochastic differential equations, The Annals of Applied Probability, vol.24, issue.2, pp.679-720, 2014.

J. Chassagneux, D. Crisan, and F. Delarue, Numerical Method for FBSDEs of McKean-Vlasov type, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01711187

P. Chaudru-de-raynal and C. A. Garcia-trillos, A cubature based algorithm to solve decoupled McKean-Vlasov forward-backward stochastic differential equations, Stochastic Processes and their Applications, vol.125, pp.2206-2255, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00847789

J. Chassagneux, Linear multistep schemes for BSDEs, SIAM Journal on Numerical Analysis, vol.52, issue.6, pp.2815-2836, 2014.

D. Chevance, Résolution numérique des équations différentielles stochastiques rétrogrades, 1997.

F. Coquet, V. Mackevi?ius, and J. Mémin, Corrigendum to "stability in d of martingales and backward equations under discretization of filtration":[stochastic processes and their applications 75 (1998) 235-248] 1. Stochastic Processes and their applications, vol.82, pp.335-338, 1999.

D. Crisan, K. Manolarakis, and N. Touzi, On the Monte-Carlo simulation of BSDEs : An improvement on the Malliavin weights, Stochastic Processes and their applications, vol.120, pp.1133-1158, 2010.

J. Chassagneux and A. Richou, Numerical Stability Analysis of the Euler Scheme for BSDEs, SIAM Journal on Numerical Analysis, vol.53, issue.2, pp.1172-1193, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01017969

J. Chassagneux and A. Richou, Rate of convergence for discrete-time approximation of reflected BSDEs arising in switching problems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01264959

J. Chassagneux and C. Trillos, Cubature methods to solve BSDEs: Error expansion and complexity control, 2017.

F. Delarue and S. Menozzi, A forward-backward stochastic algorithm for quasi-linear PDEs, The Annals of Applied Probability, vol.16, issue.1, pp.140-184, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00002980

N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probability Theory and Related Fields, vol.162, pp.707-738, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00915365

C. Geiss and C. Labart, Simulation of BSDEs with jumps by Wiener chaos expansion. Stochastic processes and their applications, vol.126, pp.2123-2162, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01118172

E. Gobet, J. Lemor, and X. Warin, A regression-based monte carlo method to solve backward stochastic differential equations, The Annals of Applied Probability, vol.15, issue.3, pp.2172-2202, 2005.

P. Henry-labordère, X. Tan, and N. Touzi, A numerical algorithm for a class of BSDEs via the branching process, Stochastic Processes and their Applications, vol.124, pp.1112-1140, 2014.

D. Nualart, The Malliavin calculus and related topics, 1995.

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems & Control Letters, vol.14, issue.1, pp.55-61, 1990.

D. Talay and O. Vaillant, A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations, The Annals of Applied Probability, vol.13, issue.1, pp.140-180, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00072260

E. Weinan, M. Hutzenthaler, A. Jentzen, and T. Kruse, On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, 2017.

J. Zhang, A numerical scheme for BSDEs, The Annals of Applied Probability, vol.14, issue.1, pp.459-488, 2004.

, P.O. Box, vol.37