Model-Based Performance Anticipation in Multi-tier Autonomic Systems: Methodology and Experiments

Abstract : This paper advocates for the introduction of perfor- mance awareness in autonomic systems. Our goal is to introduce performance prediction of a possible target configuration when a self-* feature is planning a system reconfiguration. We propose a global and partially automated process based on queues and queuing networks modelling. This process includes decomposing a distributed application into black boxes, identifying the queue model for each black box and assembling these models into a queuing network according to the candidate target configuration. Finally, performance prediction is performed either through simulation or analysis. This paper sketches the global process and focuses on the black box model identification step. This step is automated thanks to a load testing platform enhanced with a workload control loop. Model identification is based on statistical tests. The identified models are then used in performance prediction of autonomic system configurations. This paper describes the whole process through a practical experiment with a multi-tier application.
Type de document :
Article dans une revue
International Journal On Advances in Networks and Services, IARIA, 2010, 3 (3-4), pp.346-360
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

http://hal.univ-smb.fr/hal-00993647
Contributeur : Patrice Moreaux <>
Soumis le : mardi 20 mai 2014 - 15:27:32
Dernière modification le : vendredi 11 juillet 2014 - 15:39:43
Document(s) archivé(s) le : mercredi 20 août 2014 - 11:42:18

Fichier

arSaHaDiVi10.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00993647, version 1

Collections

INRIA | UGA | LIG

Citation

Nabila Salmi, Bruno Dillenseger, Ahmed Harbaoui, Jean-Marc Vincent. Model-Based Performance Anticipation in Multi-tier Autonomic Systems: Methodology and Experiments. International Journal On Advances in Networks and Services, IARIA, 2010, 3 (3-4), pp.346-360. 〈hal-00993647〉

Partager

Métriques

Consultations de
la notice

391

Téléchargements du document

575