Optimal distribution of viscous dissipation in a multi-scale branched fluid distributor

Abstract : This paper examines some theoretical aspects of the optimal design of multi-scale fluid distributors or collectors, built on a binary or quaternary branching pattern of pores. The design aims to distribute uniformly a fluid flow over a specified square surface (uniform irrigation) while simultaneously minimizing the residence time, the residence-time distribution, the pressure drop and the viscous dissipation, leading to an optimization problem of the pore-size distribution, for both length and diameter. For the binary branching, the uniform distribution of outlet points requires a particular, non-monotonous scaling law for pore lengths, and this distinguishes the structure from fractal branching patterns that have been studied previously. The quaternary branching allows a fractal-type structure (constant scale ratios for both pore length and radius). An important general result is established: in the optimal pore-size distribution, the density of viscous dissipation power (Wm−3) is uniformly distributed over the volume at all scales.
Type de document :
Article dans une revue
International Journal of Thermal Sciences, Elsevier, 2005, 44 (12), pp.1131-1141. 〈10.1016/j.ijthermalsci.2005.08.012〉
Liste complète des métadonnées

http://hal.univ-smb.fr/hal-00529687
Contributeur : Yilin Fan <>
Soumis le : mardi 26 octobre 2010 - 12:24:23
Dernière modification le : jeudi 11 janvier 2018 - 06:22:29

Identifiants

Collections

UGA

Citation

Lingai Luo, Daniel Tondeur. Optimal distribution of viscous dissipation in a multi-scale branched fluid distributor. International Journal of Thermal Sciences, Elsevier, 2005, 44 (12), pp.1131-1141. 〈10.1016/j.ijthermalsci.2005.08.012〉. 〈hal-00529687〉

Partager

Métriques

Consultations de la notice

48