Glass Transition Seen Through Asymptotic Expansions

Abstract : Soft glassy materials exhibit the so-called glassy transition which means that the behavior of the model at low shear rate changes when a certain parameter (which we call the glass parameter) crosses a critical value. This behavior goes from a Newtonian behavior to a Herschel-Bulkley behavior through a power-law-type behavior at the transition point. In a previous paper we rigorously proved that the Hébraud-Lequeux model, a Fokker-Planck-like description of soft glassy material, exhibits such a glass transition. But the method we used was very specific to the one dimensional setting of the model and as a preparation for generalizing this model to take into account multidimensional situations, we look for another technique to study the glass transition of this type of model. In this paper we shall use matched asymptotic expansions for such a study. The difficulties encountered when using asymptotic expansions for the \Heb-Lequeux are that multiple ansaetze have to be used even though the initial model is unique, due to the glass transition. We shall delineate the various regimes and give a rigorous justification of the expansion by means of an implicit function argument. The use of a two parameter expansion plays a crucial role in elucidating the reasons for the scalings which occur.
Type de document :
Article dans une revue
SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2011, 71 (4), pp.1144-1167. 〈10.1137/100800725〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

http://hal.univ-smb.fr/hal-00497462
Contributeur : Julien Olivier <>
Soumis le : vendredi 9 décembre 2011 - 13:54:19
Dernière modification le : jeudi 11 janvier 2018 - 06:12:26
Document(s) archivé(s) le : lundi 5 décembre 2016 - 08:42:39

Fichier

olivierv20110210.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Julien Olivier, Michael Renardy. Glass Transition Seen Through Asymptotic Expansions. SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2011, 71 (4), pp.1144-1167. 〈10.1137/100800725〉. 〈hal-00497462v2〉

Partager

Métriques

Consultations de la notice

349

Téléchargements de fichiers

190